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Motivation and Objectives (1)

Motivations
Transient but frequent changes in spatio-temporal properties of routing paths may affect
performance of corresponding forwarding paths (connectivity)

Frequent instabilities when observed for same (subset of) path(s) and attributable to
spatially localized portion(s) of the Internet may reveal failure-prone physical topology

Stability: spatial changes affecting sequence of (abstract) nodes and edges of paths

Provide for longer term prediction of Internet routing-forwarding system performance
using well-proven statistical analysis accounting for recurrence of events and correlation
between various events

Objectives
Characterize the dynamic properties (in particular, stability properties) of the Internet
routing and corresponding forwarding path(s).

Quantitative evaluate the reliability of the Internet connectivity (also referred to as
reachability in computer networking)

Predict its evolution over time without requiring to infer the parameters of the distribution
characterizing network failure probability and rate.
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Motivation and Objectives (2)

Generalized Weibull distribution
Modeling reliability of engineered systems and their components (e.g., physical links) by
their failure probability at specific time as well as their failure rate variation over time

Applicable when modeling simultaneous and/or correlated failures together with their
probability distribution, including node failures and common resource failures which lead
to the failure of numerous network paths

When each link failure rate depends on different parameters, leads to consider
multi-variate joint distributions (NOT simple product of individual distributions)

Nonparametric statistical methods

Instead of model-driven statistical methods, apply data-driven nonparametric
statistical methods (Kaplan-Meier survival probability estimator and Mean
Cumulative Function)

Unlike parametric statistics, makes no assumptions about the probability
distributions of the variables under study
Requires few or no assumptions about the populations from which data are obtained
Includes both descriptive and inferential statistics not relying on the estimation of
parameters (e.g., mean or variance) describing distribution of variable(s) of interest
in the population
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Model (1)

Network topology

Modeled as undirected graph G = (V ,E) where,

V : finite vertex set (|V | = n)

E : finite arc/edge set (|E | = m)

Network paths

P(u, v) , set of all paths p(u, v) from vertex u to v

Loop-free path p(u, v) ∈ P from u to v , finite sequence
[v0(= u), v1, . . . , vi−1, vi , . . . , vp(= v)] | vi−1 adjacent to vi ,∀(vi−1, vi )(i=1,...,p)∈E

Path instability (or perturbation) characterized by a change (or interruption if detectable)
in the sequence of vertices along path p(u, v)

Distance vs. Length

Length of path p(u, v) ∈ P: number of edges the path p(u, v) traverses from u to v

Distance d(u, v) between vertex u and v : minimum length path from u to v
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Model (2)

Distinction between topological, forwarding and routing paths

Topological path p(u, v)

Path from u to v as computed from the topology graph G
⇒ Topological distance defined by the shortest distance (topological) path on G

Routing path r(u, v)

Not necessarily min.length path from u to v as produced at u by the distributed routing
algorithm using as input information on G
⇒ Routing topology , sub-graph H of G representing actual nodes and links along the paths as
selected/computed by the routing algorithm

Forwarding path f (u, v)

Path followed by the traffic directed from u to v derived at u from local routing tables
⇒ Forwarding topology , sub-graph H′ of G representing actual nodes and links as selected by
router’s forwarding decision
Note: sub-graphs H and H′ not required to be identical (a routing table entry may exist without
a corresponding forwarding entry)
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Elements of Reliability Theory (1)

T : continuous random variable representing the failure time (lifetime) of a physical system

Cumulative probability distribution function F (t)

Probability that the system will fail by time t

F (t) = P[T ≤ t] =

∫ t

0
f (x) dx (1)

Failure probability density function (p.d.f.) f (t) , expected number of failures
experienced in a given time interval

f (t) =
dF (t)

d(t)
(2)

Reliability function R(t) (or survival function S(t))

Probability that the system survives at least until time t

R(t) = P[T > t] = 1− F (t) =

∫ ∞
t

f (x) dx (3)

R′(t) =
d

dt
R(t) = −f (t) (4)
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Elements of Reliability Theory (2)

Average failure rate λ(t)

If system survived up to time t (no failure event before time t) and failure occurs during
[t, t + ∆t]; then average failure rate λ(t) during time interval ∆t:

λ(t) =
F (t + ∆t)− F (t)

∆tR(t)
=

R(t)− R(t + ∆t)

∆tR(t)
(5)

Hazard (a.k.a. failure rate) function h(t)

Instantaneous failure rate at time t, given that the system survived until time t:

h(t) = lim
∆t→0

F (t + ∆t)− F (t)

∆tR(t)
= lim

∆t→0

R(t)− R(t + ∆t)

∆tR(t)
(6)

=
f (t)

R(t)
=
−R′(t)

R(t)
= −

d(lnR(t))

dt
(7)

Cumulative hazard or failure rate function H(t)

Accumulation of the hazard over time (quantifies number of times one would expect to observe
failure event in a given time period, if the event was repeatable): H(t) =

∫ t
0 h(x) dx
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Elements of Reliability Theory: Weibull distribution

Example: 2-parameter Weibull distribution
Scale parameter b > 0 (or slope), and shape parameter c > 0 (or characteristic life):

Probability density function: f (t) =
c

b
(
t

b
)c−1 exp (−

t

b
)c (8)

Probability distribution function: F (t) =

∫ t

0
f (x) dx = 1− exp (−

t

b
)c (9)

Probability that system survives until time t: R(t) =

∫ ∞
t

f (x) dx = exp (−
t

b
)c (10)

Instantaneous failure rate: h(t) =
c

b
(
t

b
)c−1 (11)

Practice
Commonly used in survival analysis and reliability engineering

But unable to capture the behavior of a lifetime data set that has a non-monotonic failure
rate function
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Elements of Reliability Theory: Generalized Weibull Distribution

Fundamental relationship: R(t) = exp(−aH(t)) with a > 0
⇒ With suitable choice of H(t) one can obtain a bathtub shaped failure rate distribution

Generalized Weibull distributions: reference for modeling reliability of engineered systems
and their components (e.g., physical links) by their instantaneous failure probability,
failure rate variation over time, etc.

Practice
Link failure rate depends on different shape and scale parameters
⇒ Multi-variate joint distributions that is not simply the product of the individual
distributions when modeling simultaneous and/or correlated failures, e.g., node failures, or
common resource failures

Additional parameters (coupling effects ν > 0 and time thresholds τ ≥ 0) required to
model the joint survival distribution RK(t) of set K comprising k components with
individual failure rate λk : RK(t) = exp

(
τνk −

[
τk +

∑k
i=1(λi t

ci
i )
]ν)

Assuming that parameters can be inferred out of observations, resulting model is
computationally intractable without simplifying assumptions

Conclusion: instead of modeling and analyzing reliability of Internet connectivity starting from
joint failure probability of different components underlying the network topology (bottom-up
structural approach), top-down statistical perspective
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Kaplan-Meier Survival Probability Estimation (1)

Assumptions and Notation
k distinct event times: t1 < . . . < ti < . . . < tk

Number of failures (or deaths) at event times: d1 < . . . < di < . . . < dk

At ti , risk set ni :
Without censoring: ni = number of survivors prior to time ti (original sample − all those that
experienced the event before time ti )
With censoring: ni = number of survivors − number of losses/withdrawals (censored cases)

Kaplan-Meier estimator Ŝ(t)
Probability of surviving beyond time tk+1: S(tk+1) = P[T > tk+1]

S(tk+1) depends conditionally on the probability of surviving beyond time
tk : P[T > tk ] = S(tk )⇒ S(tk+1) = S(tk )× P[T > tk+1|T > tk ]

Goal: build iteratively a numerical estimate Ŝ(t) of true survival function S(t)
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Kaplan-Meier Survival Probability Estimation (2)

Procedure
Conditional probability formula P(A ∩ B) = P(A)× P(B|A), ∀t ∈ [ti , ti+1)

A: event to survive to time ti
B: event to survive from time ti up to some time t before ti+1
A ∪ B: event to survive to beyond time t before ti+1

Estimated probability P[T > t] to survive at t ∈ [tk , tk+1) given by the Kaplan-Meier
(piecewise) estimator Ŝ(t):

Ŝ(t) = (1−
d1

n1
)(1−

d2

n2
) · · · (1−

dk

nk
) =

k∏
i=1:ti≤t

[1−
di

ni
] (12)

Proportion that failed at event time ti :
di
ni

Proportion that survived event time ti : 1− di
ni

Ŝ(t) = (1−
d1

n1
)(1−

d2

n2
) · · · (1−

dk

nk
) =

k∏
i=1:ti≤t

[
ni − di

ni
] (13)

Number of surviving entities after event time t: ni − di
Number of surviving entities at risk in the interval just prior to time t: ni
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Kaplan-Meier Survival Probability Estimation (3)

Cumulative Hazard Function Estimation

Instantaneous hazard function h(t) (a.k.a. hazard rate, conditional failure
rate) , event rate at time t conditional on surviving up to or beyond time t

Cumulative hazard function ˆH(t)

Integral of the instantaneous hazard rates from time 0 to t:
H(t) =

∫ t

0 h(x) dx

Represents accumulation of hazard over time
Estimated Peterson method (1977):

Ĥ(t) = − ln(Ŝ(t)) (14)
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Kaplan-Meier Survival Probability Curve

Kaplan-Meier survival probability curve

Probability of surviving in a given length of time while considering time in
many small intervals
Kaplan-Meier curve

Can take into account some types of censored data (right-censoring) if an entity is
withdrawn from a study, i.e. lost from (original) sample before the final outcome is
observed
Small vertical tick-marks indicate losses, where a entity’s survival time has been
right-censored.
When no truncation or censoring occurs (which is the case for repairable systems)
Kaplan-Meier curve is the complement of the empirical distribution function.
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Recurrent Event Data Analysis (RDA) (1)

Recurrent event data

Multiple events occurrence (across observation periods) with possible
correlation

Example: node failure observed through the occurrence of multiple link failures

Temporal trajectories of observed data often very complex to determine and
their statistical modeling leads to generalized multivariate distributions
(difficult to use in practice for analytic or predictive purposes)

Consequences

Parametric statistical models may not be flexible enough to capture their
main features and (stochastic) temporal networks where the sequence of
activation times is a stochastic model that preserves the observed
inter-event distribution difficult to apply
Nonparametric (or semi-parametric) statistical models: mean structures are
modeled non-parametrically (or semi-parametrically) and distributional
assumptions are non-parametric
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Recurrent Event Data Analysis (RDA) (2)

RDA vs. LDA
RDA commonly used in various engineering fields and is particularly useful
when performing reliability analysis of repairable systems
Compared to Life Data Analysis (LDA)

Focuses on time to event occurrence data
Assumes that events (failures) are independent and identically distributed (i.i.d)
whereas in certain situations, the events are dependent and not identically
distributed (common property of repairable system data)

Non-parametric RDA

Goal: model number of occurrences of events over time rather than length
of time prior to first event occurrence (compared to LDA)
Non-parametric RDA

Provides a non-parametric graphical estimate of mean cumulative number of
recurrences of events versus time
Non-parametric analysis method relies on Mean Cumulative Function (MCF)
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Recurrent Event Data Analysis (RDA) (3)

MCF Estimation Procedure
To compute MCF M(ti ) (estimate MCF at ti ):

At each observation time ti , the number of events ni that occurred since the
previous observation time ti−1 is recorded

Recurrent events (non-fatal), e.g., failure events followed by restoration
Events assumed to occur randomly

Number of events ni divided by number ρi−1 of pairs observable at time ti−1
(with ρ1 set to the total number of initially observable number of entities)

Compute MCF estimate using the formula:

M(ti ) =
ni
ρi−1

+M(ti−1) (15)

M(t1) =
n1

ρ0
(16)

All observation intervals: nonrandom, identical for all observations, of equal length
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Recurrent Event Data Analysis (RDA) (4)

MCF Plot
The shape of the MCF plot can reveal several important properties about
the behavior of the recurrent events under consideration in a reliability study
The MCF vs. time (age) curve can be numerically differentiated to obtain
the slope, called recurrence rate

MCF Plot Interpretation

Analyze shape of MCF plot: derive interpretation assuming that instability
events induce transient changes in paths properties that affect their
performance and operating conditions (hence, their reliability):

Constant recurrence rate: MCF plot increases monotonically, slope remains
constant → events under consideration occur at constant rate
Increasing recurrence rate: MCF plot is convex (slope increases), recurrence rate
increases over time → system performance degradation over time
Decreasing recurrence rate: MCF plot is concave (slope decreases), recurrence rate
decreases over time → maintenance improvement over time (decreasing repair rate)
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Case Study: Overview

Characterize and analyze dynamic properties of the forwarding and the
routing paths as well as their relationships
Determine whether routing paths follow mainly the perturbations
experienced by the forwarding paths or vice versa (causality effect or not ?)
Method: detection and identification of perturbation events following the
methods and procedures documented in [1] based on the stability criteria
and metrics introduced in [2] [3]
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Case Study: Data

Routing Paths
Routing path information extracted from BGP datasets provided by RouteViews project

Datasets collected over 50 days from monitored BGP routers:
complete Routing Information Base (RIB) entries (updated every two hours)
received BGP routing updates received from peering AS (separated in files recorded
every 15 minutes)

Forwarding Paths
Extracted from data recorded by RADAR tool

Measurements: traceroute-like probes initiated from a set of monitoring nodes
Targets: large set of IP address prefixes distributed across the Internet

Based on these measurements, RADAR builds ego-centered views of forwarding topology,
i.e., initiating router collects traces along forwarding paths that it probes

Subset of forwarding paths traced by RADAR corresponds to the routes obtained from
RouteViews dataset → subset of monitored routing paths also monitored by RADAR

Note: In total, analyzed dataset includes 1000 forwarding - routing path pairs over 50 days
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Case study: Kaplan Meier Survival Probability Estimation (1)

Estimated probability of survival (number of forwarding paths surviving beyond time ti )
drops quickly

Perturbations affecting directly (or indirectly) forwarding paths are common events leading
rapidly (within 10 hour) to complete connectivity unavailability if no connectivity
restoration action

The probability of survival for the routing paths follows the same type of curve than the
one observed for the forwarding paths but with a time shift
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Case study: Kaplan Meier Survival Probability Estimation (2)

First 10 hours: estimated survival probability slowly decreases to reach about 90%

During this period, estimation for forwarding paths exponentially decreases (less than
1%): second order effect on survival probability estimation for routing paths

Major routing perturbation events at 100 and 700 (X-axis) seriously affecting survival
probability of routing paths whereas (time interval between events, probability decreases
rather slowly (< 0.001))
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Case Study: Mean Cumulative Function (MCF)

MCF plot indicates that both forwarding and routing paths experience instabilities at
constant recurrence rate

Rate experienced by forwarding paths is about 10x higher than the rate experienced by
routing paths: main source of perturbation affecting reliability of Internet connectivity
would be caused by the forwarding plane

Number of Internet active paths 512k (July 2014): representative sample size of total
population to obtain confidence level of 95% and confidence interval of ±3 (approx. 16k
pairs to reach a confidence level of 99% with a confidence interval of ±1)
⇒ Main limit to generalization comes from nonrandom selection of location where
datasets have been obtained
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Conclusion

Application of nonparametric statistical methods (Kaplan-Meier survival
probability estimator and mean cumulative function) to characterize dynamic
properties of Internet routing paths and corresponding forwarding path(s)
directly related to reliability of Internet connectivity (a.k.a. reachability in
computer networking)

1 Simple causality effects between forwarding and routing paths unavailability as
identified about 10 years ago not verified anymore: our analysis determines that
main source of connectivity perturbations caused by forwarding plane instabilities
(which experiences 10x higher recurrence rate compared to routing plane)

2 Corroborates assumption that dynamic properties of routing system mainly driven
by its adaptation to forwarding system: causality effect does not find anymore a
simple explanation as forwarding paths become dominant source of instability
affecting reliability of Internet connectivity

3 Reproducing nonparametric statistical procedures on similar datasets obtained from
randomly selected locations would enable to further generalize outcomes of this
study

Future work: extend method to characterize intra-AS perturbations
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