

THE SERVICE RELIABILITY ECOSYSTEM

©Michael Tortorella, Ph. D. Managing Director Assured Networks, LLC

THEME

SDN/NFV NETWORK RELIABILITY STANDARDS CAN'T BE SENSIBLY CONSTRUCTED UNLESS YOU FIRST KNOW WHAT SERVICE RELIABILITY TARGETS YOU ARE TRYING TO MEET

OVERVIEW

- Service examples
- Customers want reliable services
- There is a language for talking about service reliability
- There is a theory and a set of engineering principles supporting reliable services
- Service reliability requirements come first!

OVERVIEW

- Service reliability requirements are abstracted from any requirements for reliability of service delivery infrastructure (SDI) and its elements
- The reliability characteristics of the SDI determine the how reliable the service it supports will be
- The order in which you do things matters!
- Ecosystem diagram

TELECOM SERVICE EXAMPLES

- Voice telephony service
 - POTS network
 - Connectionless networks
 - Mobile
- Internet access service
 - □ TCP/ IP W AN backbone
 - Local access varies
 - + Dial-up
 - + DSL
 - + TV Cable
 - + Optical

TELECOM SERVICE EXAMPLES

- Various entertainment services
 - Most mediated by the Internet
- Complex combinations of services
 - Video teleconferencing
 - Point-of-sale credit approval
 - Mobile banking
- ❖ Peer-to-peer services

CUSTOMERS WANT RELIABLE SERVICES

- *PC Magazine reliability ratings of ISPs
 - □ Internet access service "outages"
 - Upload and download speeds
- Customer reliability complaints about mobile services
 - Dropped calls
 - Echo
 - Slow data
- Verizon FiOS advertising "the fastest and most reliable Internet"

SERVICE RELIABILITY LANGUAGE

- Transactions
- Service failure classifications according to transaction phases
 - Accessibility
 - Continuity/ Fulfillment
 - □ Release
- Requirements for these are based on systems engineering understanding of customer needs and desires for satisfactory transactions in each service

SERVICE RELIABILITY ENGINEERING PRINCIPLES

- Service failure modes can be catalogued
- Service failure mechanisms and failure causes are events or omissions in the SDI
- Congestion is always a factor in SDIs
 - Economically unreasonable to provision an SDI for every possible service demand
 - When SDI elements fail, a level of service demand that might have been supportable if everything were working properly will lead to increased congestion

SERVICE RELIABILITY ENGINEERING PRINCIPLES

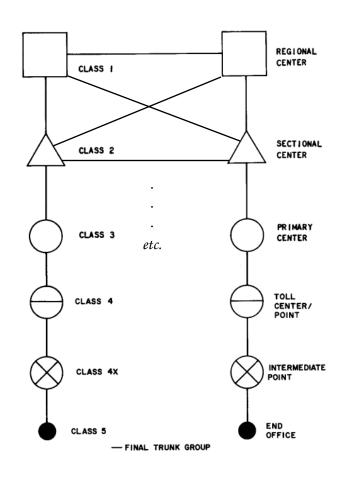
- So if you want to understand how reliable your service is,
 - Make a reliability model to relate the frequency and duration of service failures and outages to the frequency and duration of events or omissions in the SDI and/ or
 - Collect and analyze accessibility, continuity/ fulfillment, and release data
 - + DPM approach is followed by many service providers

SERVICE RELIABILITY ENGINEERING PRINCIPLES

And if you want to know what reliability requirements you should put on your SDI and its elements, "work the model backwards"

- Voice telephony (VT) is the ability to speak with another party beyond shouting distance
- VT was first delivered on an analog network
 - Panel, step-by-step, crossbar switching
 - Twisted pair, coax, microwave transport
- In the 1960s-1970s, VT began to be provided on a digital network
 - Seamless transition to
 - + Electronic switching
 - + SONET/ SDH, OC-3-12-48-292, and many other digital transport systems

- Nobody noticed! Customers don't know or care what technology you are using to provide their service
- ❖ This important principle means that <u>service</u> <u>reliability requirements</u> are invariant with respect to the nature of the SDI you use to deliver the service


- - Does not account for delays
 - No local toll distinction
- "Carrier grade" service continuity objective was "no more than 250 DPM" (for exponentially-distributed holding times with a mean of 6 minutes)
- Service release failures were so rare that no one cared
- Some important questions still linger
 - Was the 2 hours downtime in 40 years switching system requirement really necessary?

- Reliability model for the POTS network based on the 5-level hierarchy in the toll network
 - Using cut set path set methods combined with renewalreward capacity models for network elements
 - Originally, this was for the analog network (slide 16)
 - + But the structure of the digital network was similar
 - + With digital, loss/ noise/ echo were no longer issues so service fulfillment (slide 8) became simpler
 - □ Later, signaling ran on a separate SS7 network
 - + So signaling network failures need to be incorporated also
- AFAIK, a complete POTS reliability model was never satisfactorily carried to conclusion
 - Used "representative connections" approach instead
 - Generalized to histogram of connection types

VOICE TELEPHONY LL TOLL HIERARCHY

- VT can also be provided on a TCP/ IP network
- Then it is called "VoIP" but it is still a voice telephony service
- Service reliability requirements are the same!
 - □ Accessibility ≥ 0.99999
 - □ Continuity ≤ 250 DPM
 - Fulfillment?
- Release again negligible

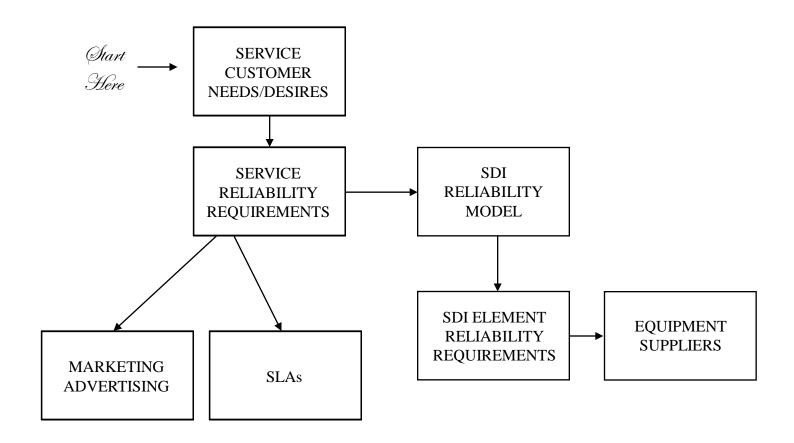
- What kind of TCP/ IP network model do you need to extract these voice telephony service reliability descriptors?
- "Representative connections" makes no sense
- Simulation models hold promise
 - □ The gov't communication folks use these
- Need to grapple with router and transport systems reliability/ capacity curves

- The service is the simple ability to connect to the internet
- Service accessibility is the probability that you can bring up your home page when you want
 - Requirement? Any page?
- Service continuity is the probability that your browsing session will be interrupted by loss of internet connectivity
 - Requirement?

- Service fulfillment is the probability that perceptual aspects (delays, video quality, etc.) of the experience are "satisfactory"
 - Requirements?
- Service release is the probability that the internet connection goes away when you dismiss it
 - Maybe not as simple as it used to be because malware continually introduces new wrinkles
 - Requirements?

- Catalog accessibility, continuity, and release failure modes
- Catalog associated failure mechanisms and failure causes in the TCP/ IP network
- One of the reasons for inconclusive discussions about internet access service reliability is that not everyone agrees on the language
 - Telephone people
 - IT people
- Standardization can help here

- Reliability models for TCP/ IP networks are considerably more complicated
- Analytical approaches via limit theorems for connectionless networks with unreliable elements
- Simulation approaches via OpNET, OmNET, etc.
- Whatever model is used, it needs to be focused on accessibility, continuity, and release at the service level


CONSEQUENCES OF INADEQUATE SERVICE RELIABILITY ENGINEERING

- Overprovisioning the SDI
 - □ Excess CAPEX
- Underprovisioning the SDI
 - More service failures than desirable
 - + Excess congestion
- Failures in network elements make the network look underprovisioned for the period of time the outages persist

SERVICE RELIABILITY ECOSYSTEM DIAGRAM

SOME BENEFITS OF STANDARDIZATION

- Promote the idea of focusing on the service first
 - Not every service provider need offer the same service reliability
 - A service provider can offer different grades of service reliability
 - Customers can make comparisons, analyze SLAs, etc.
- Promote a common language across the various stakeholder communities
- Abstract the service reliability requirements from the SDI element reliability requirements
 - Rational approach to SDI reliability requirements

SOME BENEFITS OF STANDARDIZATION

- Use the service reliability ecosystem to establish a process-based approach to SDI design and provisioning
- A clear path forward for the hard technical work of devising reliability requirements for SDN/ NFV networks and their elements
- The next generation of telecom engineers won't have to reinvent this wheel
 - Some "new" "better" technology will come along to succeed SDN/ NFV