
Chaos

Addressing the challenges of Complex
Distributed Systems at Scale

IEEE Reliability Roundtable 2015

A Little About Me

• Founder of Chaos
Engineering at Netflix

• Scaled Netflix systems from
8M subscribers to 60M

• Computer Science
background

• Technical Leadership

 @bruce_m_wong

A Little About Netflix

• 33+% of North America Internet Traffic at Peak
• Amazon Web Services, one of the largest

customers
• Over 1B hours of Netflix viewed every 2 weeks

(as of Q1.2015 earnings call)
• Very diverse device interactions

– Mobile, Laptops, TVs, Set-Top-Boxes

 @bruce_m_wong

SCALE

 @bruce_m_wong

Scale Presents Challenges

• Vertical Scale has limits (bigger more
expensive hardware)

• Horizontal Scale has complexity
• Large Monolithic systems are difficult to

change and maintain reliability
• Micro-Services add complexity

 @bruce_m_wong

CAP Theorem

Databases – CAP Theorem
Availability or Consistency? Orange doesn’t

exist

 @bruce_m_wong

Complex Systems

• Very Difficult to model
• Impossible to simulate scale

 @bruce_m_wong

Modeling

Attempting to represent a system with the purpose
of predicting behavior

• Human Behavior interacting with systems
– Social Media: live events, tv-shows, news, etc.
– Popularity of Goods, entertainment, etc.

• System Failures
– Network partitions
– Hard Drives Fail
– Power Outages

• Natural Disasters

 @bruce_m_wong

Simulation

Simulating conditions of a system often with the
purpose of testing
– Lack of modeling and scale make this impossible

• Network Conditions
– Latency, new interconnections, shared infrastructure

• Simulation at scale
– Would effect and change the Internet Network

Conditions
• Data and Capacity

– Likely too expensive to replicate
– Constant stream of new data

 @bruce_m_wong

Fault-Tolerant Systems

Designing a system to handle failure gracefully
• Eliminating Single-Points of Failure
• Allowing different aspects or micro-services to

fail independently (Failure Isolation)
• Prevent propagation (Failure Containment)

 @bruce_m_wong

Fault-Tolerant Systems

How do you validate a fault-tolerant system can
indeed fail gracefully?

• If you can’t model it
• If you can’t simulate it

 @bruce_m_wong

The Outage

 @bruce_m_wong

Case Study: The Outage

Lets take a User Preferences Service (UPS)
• Well Architected, Fault-Tolerant Design
• When unavailable users can’t update their

preferences, but product still has their last
known preferences

• UPS can fail independently of the rest of the
system

 @bruce_m_wong

Case Study: The Outage

• Changes to UPS happen
– Features, system configuration, growth, etc.

• A change gets introduced that breaks the
ability for the product to function when UPS is
unavailable

• Months Pass before UPS experiences
downtime

• Surprise system wide outage

 @bruce_m_wong

Case Study: The Outage

• Team scrambles to bring back service
– All hands on deck, people woken up
– Resources spent troubleshooting and trying to

determine what went wrong
– Customers impacted

• Post-Mortem(s) happen
– Talk and design how to prevent recurrence
– Changes Implemented

 @bruce_m_wong

The Chaos Alternative

 @bruce_m_wong

Case Study: The Chaos Alternative

Lets take the same UPS
• Changes to UPS happen

– Features, Configuration, etc.

• Chaos Exercises Regularly scheduled to
validate resilience design

 @bruce_m_wong

Case Study: The Chaos Alternative

• Exercise exposes misconfiguration that breaks
graceful degradation

• Configuration is fixed right away
• Another Chaos Exercise is scheduled to

validate

 @bruce_m_wong

Case Study Summary

The Outage
• Big user impact
• Resource intensive
• Uncontrolled
• Unpredicted
• Unintended failure

The Chaos Alternative
• Microscopic user impact
• Resource efficient
• Controlled
• Planned
• Intended failure

 @bruce_m_wong

Chaos

Chaos is the discipline and practice of
intentionally injecting failure into a production
system

• Validation of Resilience Design
• Reduce Risk of Drift caused by change and

growth
• Controlled and Planned
• Effective to Validate both Isolation and

Containment Strategies

 @bruce_m_wong

Chaos Exercise

Understand failure and prove resilience through
introducing controlled failure
– Returning a % of Errors
– Introducing latency
– Find single-points of failure
– Availability-Zone Failure Evacuation
– Regional Failure Evacuation

 @bruce_m_wong

Chaos Proven: Eliminating SPOF

In Q3.2014 a vulnerability was found that
required AWS to reboot ~10% of all instances

Over 10% of database nodes were rebooted, 1%

didn’t come back.

Zero Downtime

 @bruce_m_wong

Chaos Proven: Isolation

Learning more from 1-minute of controlled chaos
than a multi-hour unpredicted, uncontrolled
outage

• A single Critical Micro-service had many issues
causing multiple system-wide outages over the
course of months

• Multiple Chaos Exercises allowed the team to
iterate on it’s resilience design and eventually
validate and prove resilience in the face of failure.

 @bruce_m_wong

Chaos Proven: Containment

Measures to prevent the propagation of failure.
• The goal is to keep failure impact contained as

small as possible
• Instance > Cluster > Availability Zone > Region
In 2014, Netflix executed 12 Regional evacuation

exercises
• Confidence to use evacuation procedures at a

moment’s notice

 @bruce_m_wong

Confidence in Containment

• Simplifies recovery steps in the face of system
outages

• After Detection, Time is usually spent in
investigating and analysis

• With robust containment and evacuation,
impact can be mitigated while investigation
and analysis is done.

 @bruce_m_wong

Fault-Tolerant Systems meet Chaos

Fault-Tolerant Principles
• Eliminating Single-points of

failure
• Allowing different aspects

or micro-services to fail
independently (Failure
Isolation)

• Prevent propagation
(Failure Containment)

Chaos Principles
• Discovery of single-points of

failure
• Validate failure isolation

design and prevent drift
• Proactively prove

containment

 @bruce_m_wong

 @bruce_m_wong

	Chaos
	A Little About Me
	A Little About Netflix
	Slide Number 4
	Scale Presents Challenges
	CAP Theorem
	Complex Systems
	Modeling	
	Simulation
	Fault-Tolerant Systems
	Fault-Tolerant Systems
	The Outage
	Case Study: The Outage
	Case Study: The Outage
	Case Study: The Outage
	The Chaos Alternative
	Case Study: The Chaos Alternative
	Case Study: The Chaos Alternative
	Case Study Summary
	Chaos
	Chaos Exercise
	Chaos Proven: Eliminating SPOF
	Chaos Proven: Isolation
	Chaos Proven: Containment
	Confidence in Containment
	Fault-Tolerant Systems meet Chaos
	Slide Number 27

