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Outline 

NFVI and desired Characteristics 

The Resiliency Challenge 

Faults, Effects, and Measures 

Resiliency framework for NFV 

Summary 
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people will be directly touched by 
connectivity in 2015 

of respondents say their next phone 
purchase will be a smartphone 

is the amount that mobile data 
connectivity will grow between 
2010 and 2015 

in revenue will be generated 
worldwide by consumer mobile 
apps in 2015 

5  
Billion 55% 

$46  
Billion 29X 

New kinds of consumers 

New kinds of connections 

New kinds of devices 

New ecosystems 

Infrastructure Challenges 

Source: Yankee Group*, 2012 

Drive more Demanding Performance 

*Other names and brands may be claimed as the property of others. 
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Transforming the Network with SDN and NFV 
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NFV End User Value Proposition 

Rapid 
Service 

Innovation 

 

Lower TCO 

 

 

On-Demand 
Service 
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NFV Infrastructure Attributes 

Reliability 

Availability 

Manageability 

Security 

Performance 

 

RAS  A main theme 
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Faults can be very costly 

Increasingly Common Faults 
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Moore’s Law 

# Transistors double every 

~2 years 
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Unprecedented Integration 

• Moore’s Law enables unprecedented levels of integration 

• Heterogeneous system integration of Cores, Graphics, 

Media, IOs, memory technologies, etc. to satisfy USERS’ 

experiences and reduce OPERATORS’ expenditures  
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Heterogeneous System Integration further drives the 

Resiliency Challenge 

IEEE Communications Quality and Reliability Workshop, 2014  
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Potential Fault Sources 

Transistors 

Integration 

Faults 
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Types of Faults 
Faults Type Example 

Permanent faults Stuck at 0 - 1 Open, shorts, power supply 

or fan shutdown 

Gradual faults Spatial:  Variations 

 

Temporal:  

Temperature effects 

Fast and slow cores 

 

Change in frequency with 

temperature 

Aging faults Degradation (slow 

gradual temporal) 

Loss of frequency over 

time, erratic bits in memory 

Intermittent/transi

ent faults 

Soft errors (radiation 

induced) 

Voltage droops 

Flipped bit causes data 

corruption, loss of control, 

not reproducible 

Faults cause errors (data & control) 

Datapath/array errors Detected/corrected by parity/ECC 

Control errors Control lost (Blue screen. system hang 

Silent Data Corruption Not detectable 

Source: Shekhar Borkar, Intel 
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Sources of Variations 
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Sub-wavelength Lithography 
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Variability and Degradation 
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Transistor aging 
Degrades drive current with time 
Results in performance loss over 
time 

Source: Jose Maiz, Intel 
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NTV for Energy Efficiency 

0

0.2

0.4

0.6

0.8

1

0.3 0.5 0.7 0.9

Vdd (Normal)

N
o

rm
a

li
z
e

d

0

2

4

6

8

10

Freq

Total Power

Leakage

Energy Efficiency

When designed to voltage scale 

Source: Shekhar Borkar, Intel 



15 IEEE Communications Quality and Reliability Workshop, 2014  

NTV and Variability 
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40nm pitch & 100B+ interconnects 

• E field increases, and so do the number of interconnects 

• Cu Migration & Dielectric failures specially with ULow-K ILD 

and linear defects are concerns 

Interconnect scaling: E-field increases 

ILD Efield @ 1V (line to line) 
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increases E field resulting in 
lower reliability 

Source: Jose Maiz, Intel 
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Soft Errors: Cache cell 

@900m 

Cache Cell SEU Trend 
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SER per bit is decreasing but… 
Number of memory bits can double 

Decreasing cell to cell 
distance increases 
probability of multi-bit upset 

Source: Jose Maiz, Intel 
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Soft Errors: Latch and System 

@900m 

Latch SEU Trend 
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2X bit/latch count 
increase per 
generation 

SER per latch bit is 
decreasing but… 
Number of latches 
double 

SER for cache remains ~ 
constant 
But SER for chip logic continues 
to increase because SER/latch is 
not decreasing fast enough 

Source: Jose Maiz, Intel 
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Road to Unreliability? 
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Source: Shekhar Borkar, Intel 

Will this happen? 
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Faults, Effects, and Measures 
Type of Fault Effect Measure 

Permanent faults Fan, power supply, shorts 

and opens 

Sensors for detection 

Recover, reconfigure 

Gradual spatial faults Variations in frequency of 

cores 

Screening, configuration 

Gradual temporal faults Temperature increase 

causing frequency loss 

Detect and correct, 

proactively reconfigure 

Intermittent faults Data corruption by noise 

or soft error, control loss 

Diagnose, retry, recover 

Slow degradation Frequency loss 

Erratic bits in memory 

Proactive measure, 

testing, decommission 

faulty HW 

Resiliency best implemented as SW and HW Co-design 
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Resiliency Framework for NFV 

- Open Stack 
- Open Stack/Open Day Light 
- Open ?? 

At Application 

level 

- Application 

aware 

Redundancy 

and HA 

mechanisms 

At VNF layer: 

- VNF state 

and network 

function 

connectivity 

persistence    

At VM layer: 

- VM memory 

state, 

peripherals 

and 

connections  

persistence  

At NFVI layer: 

- CPU, Bus and 

Memory 

sparing 

- device and 

connections  

mirroring or 

bonding 

Failure detection & recovery at lower layers to contain faults propagation to upper layers reducing the system overhead  

Predictive Failure Analysis to catch failures before they occur and allow system to take actions to provide HA 
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Summary 
Integration and NFV consolidation drive 

resiliency challenges 

Must understand and characterize faults 

SW and HW Co-design is the most effective 

way to achieve resilient system 

Detect errors in HW, diagnose & correct via SW 

Solutions should be autonomous  

Solutions must incur low cost, performance 

and power impact 

System ‘Health’ Monitoring and Failure Prediction are the 

fundamental Resiliency Toolkit for NFV 

Circuit & Design 

Microarchitecture 

Microcode, Firmware 

Programming system 

Applications 

System Software 




