Resiliency Challenges in Future Communications Infrastructure

Hang Nguyen Intel Corporation May 14, 2014

Acknowledgements: Pranav Mehta and Shivani Sud of Intel

Outline

NFVI and desired Characteristics The Resiliency Challenge Faults, Effects, and Measures Resiliency framework for NFV Summary

Infrastructure Challenges

New kinds of consumers

5 Billion

people will be directly touched by connectivity in 2015

New kinds of connections

29X

is the amount that mobile data connectivity will grow between 2010 and 2015 \$46 Billion

55%

in revenue will be generated worldwide by consumer mobile apps in 2015

New kinds of devices

of respondents say their next phone

New ecosystems

purchase will be a smartphone

Source: Yankee Group*, 2012

*Other names and brands may be claimed as the property of others.

Drive more Demanding Performance

Transforming the Network with SDN and NFV

110

NFV End User Value Proposition

Lower TCO

On-Demand Service

Rapid Service Innovation

NFV Infrastructure Attributes

Reliability

Availability

Manageability

Security

Performance

$RAS \rightarrow A$ main theme

Increasingly Common Faults

Faults can be very costly

Moore's Law

Transistors double every ~2 years

4004

8008

1971

iter.

Scaling Trends

Transistor dimensions scale to improve performance, reduce power and reduce cost per transistor

IEEE Communications Quality and Reliability Workshop, 2014

IDF201

Unprecedented Integration

- Moore's Law enables unprecedented levels of integration
- Heterogeneous system integration of Cores, Graphics, Media, IOs, memory technologies, etc. to satisfy USERS' experiences and reduce OPERATORS' expenditures

Heterogeneous System Integration further drives the Resiliency Challenge

Potential Fault Sources

Types of Faults

(inte

Faults	Туре	Example
Permanent faults	Stuck at 0 - 1	Open, shorts, power supply or fan shutdown
Gradual faults	Spatial: Variations	Fast and slow cores
	Temporal: Temperature effects	Change in frequency with temperature
Aging faults	Degradation (slow gradual temporal)	Loss of frequency over time, erratic bits in memory
Intermittent/transi ent faults	Soft errors (radiation induced) Voltage droops	Flipped bit causes data corruption, loss of control, not reproducible

Faults cause errors (data & control)		
Datapath/array errors	Detected/corrected by parity/ECC	
Control errors	Control lost (Blue screen. system hang	
Silent Data Corruption	Not detectable	

Sources of Variations

Temp Variation & Hot spots

Variability and Degradation

Smaller Transistors Higher σ in Vt ~ 10mV in σ (Vt) per generation Transistor aging Degrades drive current with time Results in performance loss over time

NTV for Energy Efficiency

When designed to voltage scale

NTV and Variability

Variability becomes worse at NTV

Interconnect scaling: E-field increases

Decreasing line pitch increases E field resulting in lower reliability

40nm pitch & 100B+ interconnects

- E field increases, and so do the number of interconnects
- Cu Migration & Dielectric failures specially with ULow-K ILD and linear defects are concerns

Soft Errors: Cache cell

Decreasing cell to cell distance increases probability of multi-bit upset

SER per bit is decreasing but... Number of memory bits can double

Soft Errors: Latch and System

SER per latch bit is decreasing but... Number of latches double SER for cache remains ~ constant But SER for chip logic continues to increase because SER/latch is not decreasing fast enough

Road to Unreliability?

Pessimistic speculation, please do not use as data

Will this happen?

Faults, Effects, and Measures

Type of Fault	Effect	Measure
Permanent faults	Fan, power supply, shorts and opens	Sensors for detection Recover, reconfigure
Gradual spatial faults	Variations in frequency of cores	Screening, configuration
Gradual temporal faults	Temperature increase causing frequency loss	Detect and correct, proactively reconfigure
Intermittent faults	Data corruption by noise or soft error, control loss	Diagnose, retry, recover
Slow degradation	Frequency loss Erratic bits in memory	Proactive measure, testing, decommission faulty HW

Resiliency best implemented as SW and HW Co-design

Resiliency Framework for NFV

Failure detection & recovery at lower layers to contain faults propagation to upper layers reducing the system overhead Predictive Failure Analysis to catch failures before they occur and allow system to take actions to provide HA

Summary

Integration and NFV consolidation drive resiliency challenges Must understand and characterize faults SW and HW Co-design is the most effective way to achieve resilient system Detect errors in HW, diagnose & correct via SW Solutions should be autonomous Solutions must incur low cost, performance and power impact

System 'Health' Monitoring and Failure Prediction are the fundamental Resiliency Toolkit for NFV

