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Ultra-Reliable Fly-By-Wire Computers for
Commercial Airplanes’ Flight Controls Systems

» [ntroduction: FBW Computers Chronological History & FAR
» Fail-Passive and Fail-Operational Avionics

» Fundamental Concept of Dependability

* [ndustry Experiences on Error Types

= Boeing FBW Design Philosophy for Safety

= 777 FBW Requirements and Design Philosophy

» Common Mode Failure and Single Point Failure

» Generic Error and Dissimilarity Considerations

» Safety Requirements for 777 FBW Computers



@ﬂﬂf]ﬂﬂ

High Level Chronology of

High Integrity Computing

Academic & NASA Year Industry
First Computer Developed at U Penn 1947
Pr'ofessor Shannon (MIT): Building Reliable Systems Bell Labs ESS (Electronic Switching System)
with Un-reliable components
. . 1950
Information Theory & Coding . :
(Error detection & correction, Hamming code, etc) IBM Main Frame Computer (with fault tolerance concept)
Bell Systems Undersea Cable
NASA Space Program 1960 (Electronics and system design for high reliability)
Boeing Flight Controls C* Handling Quality Criterion developed
IEEE International Conference on Fault Tolerant - .
Computing Started Military FBW (Fly-By-Wire) Systems
NASA-Langley FBW Program, 1972 - 78 1970 -
(Draper Lab, SRI International) Military Data Bus (1553 protocol)
Space Shuttle FC Computer Boeing Linear Data Bus R&D for FBW (ARINC 629)
Boeing Commercial Airplane FBW R&D, 1984 -
IEEE/IFIP Dependable Systems and Networks 1980 | Bell Labs No. 5 ESS
First Commercial Airplane FBW (A320), 1988
Boeing 777 FBW, 1995
1990 | EU Drive-by-Wire
Embraer-170 FBW (Analog)
2011 | Boeing 787 FBW
2017 | China 919 FBW (projected)
NASA (next) Moon Landing 20X X?




o =aemve Harmonized FAR 25.1309 Requirements

Harmonized 25.1309 Requirements and Compliance Summary

Effect on Airplane

No effect on
operational capabilities
or safety

Slight reduction in
functional capabilities
or safety margins

Significant reduction in
functional capabilities
or safety margins

Large reduction in
functional capabilities
or safety margins

Normally with hull loss

Effect on Occupants
excluding Flight
Crew

Inconvenience

Physical discomfort

Physical distress,
possibly including
injuries

Serious or fatal injury
to a small number of

passengers or cabin

crew

Multiple fatalities

Effect on Flight No effect on flight crew | Slight increase in Physical discomfort or Physical distress or Fatalities or
Crew workload a significant increase excessive workload incapacitation

in workload impairs ability to

perform tasks

Classification of No Safety Effect Minor Major Hazardous Catastrophic
Failure Conditions
DO-178B S/W & DO- Level E Level D Level C Level B Level A
254 H/W Levels
Allowable No Probability Probable Remote Extremely Remote Extremely Improbable
Qualitative Requirement
Probability
Allowable 10-3 10-5 10-7 10-9
Quantitative Average Probability per Flight Hour (or per Flight if Less than One Hour) on the Order of:
Probability:

System Compliance
Method

(Common cause
hazards not conducive
to numerical analysis,
such as foreign object
collision, human error,
etc. may be analyzed
primarily by Design
Review.)

FHA & Design Review

FHA & Design Review

FHA, Design Review,

FHA, Design Review,

FHA, Design Review,

Design, functional
separation, and
implementation
reviewed to ensure
failures will only
produce no safety
effect.

Design, functional
separation, and
implementation
reviewed to ensure
failures will only
produce Minor effect.

& FMEA Review
Failure modes &
effects analysis
reviewed to ensure
that failure effects of
components involved
in the function and
failure rates are
appropriate for Major
category

& Fault Tree Analysis
FMEA & FHA data

combined in detailed
fault tree analysis to
validate that the
system probability of
hazard is Extremely
Remote.

& Fault Tree Analysis
FMEA & FHA data

combined in detailed
fault tree analysis to
validate that the
system probability of
hazard is Extremely
Improbable

Effect Category
Validation

All functional hazards should have a multi-disciplinary review by experts representing the engineering
and operational areas. Where functions are the same as previous airplanes, past experience should
be reviewed. Other conditions should be evaluated in lab and simulation tests. Failures affecting
handling qualities will be evaluated in piloted simulation and/or flight test.

Specific failures may
be evaluated by piloted
simulation as
necessary.
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Fail-Passive and Fail-Operational

» Fail-Passive Electronics to avoid active airplane effect

* An electronics function is said to be fail-passive if its failure
effect is loss of its output for its intended function

= Fail-Operational Electronics via multiple redundant hardware

« Multiple redundant hardware can facilitate meeting functional
availability requirements for safety critical electronics system,
as long as there exists no common-mode or single point
failure.

= 777 FBW computers are used for elaboration



geaeve Eyndamental Concepts of Dependability
(Avizienis & Laprie & Randell)

= Among 4 classes of accidental or non-malicious faults,
» Human-made interaction faults
= Design faults
» Physical internal faults
= Physical external faults

» Human-made interaction and design faults dominate as sources of
failure/error for larger, controlled systems



7 moEme Flight Controls Industry Experiences on
Error Types of
Complex Flight Controls Systems

= Requirement Error*

* |mplementation Misunderstanding*

= Software Design or Coding Error*

= [Future Process Errors in Previously Qualified Electronics Parts

» Relatively new programmable VLSI circuits whose number of states
approach infinity and therefore non-deterministic

*Can be attributed to Interaction Fault, Software/Hardware Interface
Incompatibility



O Boeing FBW Design Philosophy
for Safety

= To meet extremely high functional integrity and functional availability

requirements (of 1.0E-10 per hour), multiple redundant hardware resources
are required for FBW systems.

» The fault tolerance for trustworthy FBW system design should consider all
known and unknown causes of problem/failure/error, known as common
mode failure and single point failure.

We know what we don’t know

We don’'t know what we don’t
know (Unknown unknown)

<4— We know



(L aoEme 777 FBW Requirement and
Design Philosophy

The FBW requirements are developed from:
» Certification agencies requirements
» Customer and Boeing requirements

¢ Postulated failures, regardless probability of occurrences, can
become derived requirements by a group of knowledgeable
persons

“» Key FBW computer architectures per NASA FBW (FTMP/FTP,
SIFT, MAFT): Byzantine Failure

*» Derived 777 FBW design requirements for potential
communication asymmetry and functional asymmetry
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777 Control Surfaces
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n =aemve  Alrplane Control-Aerodynamics-Structure-Pilot
Interactions Concept Diagram
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777 Primary Flight Control System
System SUPPORTING SYSTEMS
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AFDC Autopilot Flight Director Computer
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MFD  Multiple Function Display

PSA  Power Supply Assembly

FSEU Flap Slat Electronics Unit
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PFC  Primary Flight Computer
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Common Mode Failure
(per SAE ARP4754)

= Airplane susceptibility to common mode and common area damage is addressed by
designing the systems to both component and functional separation requirements.
This includes criteria for providing installations resistant to maintenance crew error or
mishandling, such as:

= |mpact of objects

» Electrical faults

= Electrical power failure

= Electromagnetic environment

= Lightning strike

» Hydraulic failure

= Structural damage

» Radiation environment in the atmosphere
= Ash cloud environment in the atmosphere
= Fire

= Rough or unsafe installation and maintenance
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O\ soeve Dissimilarity of 777 FBW Electronics

PFC:

» Dissimilar processors and compilers (common software)
« DO-178 development process

* ASIC development process

ACE:

* Dissimilar monitor and control functions

* ASIC development process

Inertial Data:

e Dissimilar ADIRU/SAARU

« DO-178 development process

AFDC:

« DO-178 development process

* ASIC development process

» Dual dissimilar hardware for backdrive function
ARINC 629:

* ACE Direct Mode which bypass ARINC 629



(L woeve 777 PFC
Safety Requirements

= Numerical probability requirements
» < 1.0E-10 per hour for functional integrity requirement
» < 1.0E-10 per autoland during the critical phase of an autoland
» < 1.0E-10 per hour for 777 PFC functional availability

= Non-numerical safety requirements

No single fault, including common-mode hardware fault, regardless
of probability of occurrence, shall result in:

= An erroneous transmission of output signals without a failure
indication.

= | oss of function in more than one PFC
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777 Actuator Control Electronics
Architecture

(L BOEING

Flight Control Digital Data Buses
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Triple-Triple Redundant

777 Primary Flight Computer

* 3 |DENTICAL CHAMMELS - LEFT, CENTER, RIGHT
« 3 DISSIMILAR LANES IM EACH CHANMEL - ONE IN COMMAND,
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Flight Controls

777 PFC Channel
Command Path
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777 PFC Channel
Command/Monitor Architecture
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