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Cloud Technologies 
 

• Basic infrastructure components: 
 Physical servers (and virtual machines, aka VMs), racks, clusters 

 Power distribution units (PDUs) and cooling infrastructures 

 Switches, routers and datacenter networks 

 

• Increasing adoption/reliance 
 Providers: Amazon, Google, Microsoft, Rackspace, SaleForce… 

 Clients:  individuals, and small to large companies/institutions 

 
• Availability/reliability is a top concern  
 cited by 67%, followed by device based security (66%) and cloud 

application performance (60%).  

 Cisco Global Cloud Networking Survey, 2012. 



Failures are all too common 
 

 
• Frequent small-scale failures and infrequent large-scale failures 
• Typical first year for a new cluster (Jeff Dean, Google) 

 
 ~0.5 overheating (power down most machines in <5 mins, ~1-2 days to 

recover) 
 ~1 PDU failure (~500-1000 machines suddenly disappear, ~6 hours to 

come back) 
 ~20 rack failures (40-80 machines instantly disappear, 1-6 hours to get 

back) 
 ~5 racks go wonky (40-80 machines see 50% packetloss) 
 ~3 router failures (have to immediately pull traffic for an hour) 
 ~dozens of minor 30-second blips for DNS 
 ~1000 individual machine failures 
 ~thousands of hard drive failures 
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Failures cost too much 

http://www.emersonnetworkpower.com/en-US/About/NewsRoom/Pages/2011DataCenterState.aspx 



Why Current Cloud Services Are Flawed 

• Current Service Level Agreement (SLA) is loosely defined in terms 
of availability/reliability measurements. 

 

• Penalty term is not user-friendly. The refund is usually issued in 
the form of credit with a lot of exclusions. 

 Amazon EC2 will refund the user in the form of credit if fail to meet the 
SLA. 

 Rackspace will credit the user 5% month fee for each 30 mins 
network/infrastructure downtime, up to 100% monthly fee of the 
affected server. 

 

• Lack of high availability/reliability guarantee for critical services 

 Cannot guarantee 3-9’s, let alone 5-9’s as in Telco networks. 
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Key Challenges and Solutions 

A user/app may request: 
 # of VMs for response-time performance: n (e.g., 100) 
 Desirable availability (possibly a range): α (e.g., 99.9%) 
 Desirable contract duration: t (e.g., 3 months) 
 

The Cloud SP performs the following: 
• Downtime prediction based on failure models 

 Model component failures  
 Determine downtime distributions 

•  Availability-aware cloud resource provisioning and allocation 
 Determine the optimal  (minimal) # of backup VMs, k, to be allocated  
 Both risk and energy minimizing placement of n+k VMs 

• SLA contract design 
 Determine its costs: Capex (~h(n; k)) and Opex (~energy consumption) 
 A price list (schedule)  for  <duration, availability-guarantee, penalty> 
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Open Problems 

• Downtime prediction based on failure models 

 

• Availability-aware cloud resource provisioning and 
allocation 

 

• SLA contract design 
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Downtime Predictions 

• Probability of maintaining uptime guarantee 

• Or, analogously, downtime probability  

 Likelihood of SLA violation 

 

• How to get this probability? 

• Steady state availability 

 Mean-time-to-failure (MTTF): uptime 

 Mean-time-to-repair (MTTR): downtime 

 Mean-time-between-failures (MTBR) = MTTF+MTTR 

 Availability =  MTTF / MTBF: uptime percentage 

 Assuming infinite contract duration – not realistic! 
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Our Research Contributions 

• Closed-form analytical solution of downtime probability density 
function (or pdf) 

 Existing work requires one to iteratively compute an estimated pdf (de 
Souza de Silva and Mello 1986) 

 
• Two distinct estimation methods using sample path analysis 

 Computational method utilizing the limiting behavior of birth-death 
process - extremely time-consuming  

 Statistical sampling approach – our approach 
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Downtime Under “Without Delay” Model 

• In this example, we don’t consider the delay caused by booting up 
and imaging a machine. 

 

• One of three possible events in any one time units:  

 one server failure, one repair, and no change.  

 
• The state is the number of physical servers that are currently down 
 “0” means no server is down: may transit to state “o” or “1” next  
 “1” means 1 server is down: may transit to state “o”, “1”, or  “2” next 
 “2” means 2 servers are down: may transit to state “1”, or  “2” next 
 

• For each physical server： 

 the failure rate =1/MTBF; the repair rate =1/MTTR. 

 Assumption in the example: all transitions are equally possible 
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Complete Enumeration of Sample Paths:  

An Example with 2 VMs (1 working + 1 backup) 
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Downtime Distribution Result 

A.Y. Du, S. Das, C. Qiao, R. Ramesh and Z. Yang, “Reliability in Cloud Computing: Downtime Predictions for Virtual 
Servers,” in 21st Workshop on Information Technologies and Systems, 2011  



Availability-aware cloud resource 

provisioning and allocation 

• Provider strategy 

 Allocate additional backup VMs  

 If a client demands n VMs but is allocated k additional VMs, downtime 
occurs only if at least k+1 VMs are down. 

 

• How many backup VMs to provide? 

 Over-provisioning ? (increases cots and reduced profit) or   

 Under-provisioning?  (violate SLA and pays a penalty) 

 

• How/where to place these n+k VMs? 

 Same server, or same rack (saves energy, reduces costs) or 

 Different servers/racks (more failure/risk tolerant) 
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Optimal Backup Provisioning Model 
 

• Expected Total Cost = Provisioning Cost ℎ 𝑛; 𝑘  * t + Expected 
Penalty 𝜋 ∗ (expected penalizable downtime) 

 h is an increasing function of k, while downtime is a decreasing 
function of k. 

 Can reduce penalty by providing more backup VMs, however this 
entails a larger provisioning cost 

 Trade-offs between provisioning cost and the expected penalty  
 

• To find a closed form solution, we need a differentiable functional 
form of the downtime distribution. 

 No good fitting on actual downtime distributions (using e.g. 
Exponential, Gamma, Weibull, log normal distributions) 

 Derived a piece-wise linear approximation of the downtime 
distribution using a method developed by Wang and Chaovalitwongse 
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SLA Violation Probability Decreases with 

Increasing Backup VMs 
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Risk-Energy-Minimizing (REM) VM Placement  
 

• Cost of a typical datacenter is dominated by server cost and 
energy cost. 

 

• Distributing the VMs among different servers/racks can lower 
the risk of SLA violation due to failures of servers and Top-of-
Rack (ToR) switches 

 the risk can be characterized by the normalized deviation of the 
number of available/accessible VMs. 

 

• However, it will increase the energy cost as one need to power up 
more servers and racks. 

 

 



Two Extreme VM Placement Strategies 

• Energy Minimization (common):  consolidate VMs  to as few 
servers/racks as possible: 

 reduces the number of active servers/racks to be powered on 
(passive/idle servers/racks will be turned off). 

 However, the risk of SLA violation is high as one server/rack failure 
may wipe out all the VMs of an application. 

• Risk Minimization: distribute VMs among as many different 
servers/racks as possible: 

 A server/rack  failure affects only one VM per application. 

 However, more servers/racks may need to be powered on. 

• Objective is to strike a balance between the two extreme 
placement strategies. 
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Example of two different placement 

strategies (3 VMs for one application) 

risk = 0.53

energy = 860watt

risk = 0.21

energy = 995watt

(near min. energy E0) (near minimum risk0) 



Optimization Objective Function 

• Characterize the risk of violating the availability requirement for 
application i 

 
• Objective function and constraints 

                                                               

        
       subject to: 

     

θ is the weight parameter 
assigned to energy 

server capacity limitation 

each VM mapped to exactly 
one server 



Heuristic Algorithms (Offline & Online) 

• Offline (Batch) Algorithm: Pack-Then-Distribute (PTD) 
 Consolidate VMs as much as possible first to obtain minimum energy 

consumption E0. 

 Then move select VMs to different servers/racks to reduce risk, and 

the overall objective function value. 

• Online (Per Request) Algorithm: mimics PTD 
 Tries to “learn” the number of servers/racks needed for a given 

request for n VMs from PTD. 

 Then map the VMs to that many servers/racks in an energy-efficient 

manner. 

• Both compare favorably with existing approaches. 
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Simulation Results 
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SLA Contract Design:  
Schedule of Price (p) and Penalty rate (π)  

 

• Determine the unit price for the contract given other parameters 
(e.g. penalty, contract duration, availability guarantee ) 

 

• Lower bound on the unit price based on provider’s expected profit 
function 
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• Schedule of price and penalty combinations such that the 
seller is indifferent across these combinations. 



Impact of Penalty rate (π) on Backup VMs 

Provisioning 
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SLA Contract Design 

Pricing to Defer Penalty 
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• The  SP derives the highest price such that the client is sufficiently 
incentivized to defer the penalty, in the event of SLA violation.  

• If the uptime guarantee in the SLA 
is not met, the client is eligible to a 
pre-determined penalty.  

 

• The SP may consider deferring the 
penalty payout to the end of the next 
service window, in hopes of 
eventually fulfilling the availability 
guarantee. 



Concluding Remarks 

• Availability in cloud computing very important  

 Has not received sufficient attention 

 Existing approaches not effective and need overhaul 

 Impedes many  applications / business opportunities 

 

• Key challenges and promising solutions 
 Downtime prediction based on failure models 

 Availability-aware VM provisioning and placement 

 SLA contract design for pricing, availability guarantee, penalty and 
duration 

 

• Need multidisciplinary and university-industry collaboration 
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