Reliable Multicast Sessions Provisioning in Sparse Light-Splitting DWDM Networks using P-Cycles

Ahmed FRIKHA, Samer LAHOUD, Bernard COUSIN and

Miklos MOLNAR

ATNET Team, IRISA.

University of Rennes 1, France.

Introduction

- > DWDM networks allow hundreds of wavelengths to be multiplexed into one single fiber.
 - A Node or Link failure could disrupt several communications.

- > In Multicast traffic:
 - One single node or link may carry the traffic to multiple destinations.

Problem Statement

- > Problem:
 - Node and link failure recovery for dynamic multicast traffic in sparse light-splitting DWDM networks.
- > Challenges:
 - Sparse light-splitting constraints:
 - Avoiding Multicast Incapable (MI) nodes.
 - Ensuring wavelength continuity.
 - Efficient use of the network capacity.
 - Fast restoration time.

P-Cycles (pre-configured protection cycles) protection approach.

P-Cycle Protection Approach

➤ A p-cycle:

- Pre-configured closed path
- Reserved capacity
- ➤ Network protection strategy:
 - Links
 - Nodes

Link Protection Mechanism

≻On-cycle link:

- The failed link is on the p-cycle
- Na injects the input light signal in the p-cycle.

Link Protection Mechanism

➤Straddling link:

Link's end nodes are on the p-cycle.

Link is not used by the p-cycle.

Na injects the input light signal in

the p-cycle.

- \triangleright Let **D** be the **set** of **destination affected** by a failure on a node **N**f.
- ➤ A p-cycle can **protect** Nf:
 - If it contains a **protection segment** [Na, Ne] such that:
 - ✓ Na activates the p-cycle whenever Nf fails.
 - ✓ Every destination in **D** is **covered** by [Na, Ne].
 - ✓ Nf does not belong to [Na, Ne].

- **▶**Na is a **Multicast Capable** (MC) node
- ➤ Na splits the input light signal into two

signals:

- The **first** is injected in the **p-cycle**.
- The second is injected in the down streaming node of the light tree.

➤ Na is a **leaf destination** node:

• Na **injects** the input light **signal** in the **p-cycle**.

- **▶**Na is a **Multicast Incapable** (MI) node:
 - It reroutes the multicast traffic trough the p-cycle.
 - Downsteaming destination of Na is covered by the p-cycle.

Existing Algorithm for Dynamic Multicast Traffic

- ➤ The **ESHN** algorithm:
 - **Dynamic** multicast traffic
 - P-cycle protection approach
 - The most efficient algorithm in the literature in terms of :
 - ✓ Bandwidth saving
 - **✓ Acceptance rate** of the request
 - High computational time!
 - Not adapted for sparse light-splitting constraints!

The Proposed Algorithms

- ➤ An improved version of ESHN:
 - Takes into consideration the sparse light-splitting constraints.
- ➤ The **NPCC-SSC** algorithm:
 - Uses our proposed concept for node protection with sparse light-splitting constraints.
 - Uses a candidate cycle set to maintain a low computational time.

Candidate Cycles Selection

> **NPCC-SSC** selects the candidate cycles in advance based on the protection capacity score **PC**.

$$PC(Cj) = \frac{LCj}{|Cj|}$$

- *LCj*: The amount of link capacity in the network that *Cj* can protect.
- $|C_j|$: The sum of spare capacity required by C_j .

Performance Evaluation

- > Dynamic Multicast traffic:
 - **2.500.000** requests for each traffic load value.
 - **Five** destinations in each multicast request.
- > 50% of nodes are MI.

Topology: COST239 Network

Blocking Probability (BP)

Resource Utilization (RU)

Average Computational Time (CT)

Conclusion

	ESHN	ESHN improved	NPCC-SSC
Blocking Probability (<i>BP</i>)	The Highest one	High	The Lowest one
Resource Utilization (RU)	High	The Highest one	The Lowest one
Computational Time (CT)	Hight	The Highest one	The Lowest one

Thank you for your attention

Conclusion

> Problem:

 Node and link failure recovery for dynamic multicast traffic in sparse light-splitting DWDM networks.

Propositions:

- Extending the **p-cycle** approach to support **node** protection with sparse light-splitting constraints.
- Two novel algorithms:
 - **✓ ESHN improved**
 - ✓ NPCC-SSC

Performance Evaluation

≻Performance criteria:

- The Blocking Probability (BP)
 - Percentage of requests that cannot be routed or protected among the total number of requests.
- Average Computational Time (CT)
 - Required for routing and protecting a traffic request.
- Resource Utilization (*RU*)
 - Percentage of **reserved wavelengths** in the network among the total number of wavelengths.

The ESHN Algorithm

- > P-cycles are **selected** based on the Efficiency Score (**ES**).
 - The p-cycle with the highest ES is selected and configured.

$$ES(Cj) = \frac{Wj,L+Wj,N}{|Cj|}$$

- *Cj*: A protection p-cycle.
- |Cj|: The sum of **spare capacity** required by Cj.
- Wj,L: The amount of working link capacity protected by Cj.
- **Wj,N**: The number of **transit nodes** protected by **Cj.**

Flow chart of NPCC-SSC

