

Low Latency Dynamic Bandwidth Allocation for 100km Long Reach 10G-EPON

NTT Access Network Service Systems Laboratories

Daisuke Murayama

May 15, 2012 CQR 2012 in San Diego

- 1. Introduction
- 2. Low Latency DBA for Long Reach EPON
- 3. Performance Assessment of Proposed DBA
- 4. Summary

1. Introduction

- 2. Low Latency DBA for Long Reach EPON
- 3. Performance Assessment of Proposed DBA
- 4. Summary

EPON : Ethernet Passive Optical Network

- One of most common access NW systems
- Sharing bandwidth with Dynamic Bandwidth Allocation (DBA)

MPCP: Multi-Point Control Protocol

Message exchange for DBA (exactly matching allocation)

- 1. Introduction
- 2. Low Latency DBA for Long Reach EPON
- 3. Performance Assessment of Proposed DBA
- 4. Summary

(0

- EPON reach extending with development of optical PON repeater
 - Expand coverage area
 - Consolidate central offices in urban area

- **EPON reach expanding with development of optical PON** repeater
 - Expand coverage area
 - Consolidate central offices in urban area

- **EPON reach expanding with development of optical PON** repeater
 - Expand coverage area

Consolidate central offices in urban area

0

- EPON reach expanding with development of optical PON repeater
 - Expand coverage area

Consolidate central offices in urban area

Latency time increase

Proposal: New DBA for Long Reach EPON

Exactly matching and predicting hybrid allocation

- Predicting allocation for long-distance ONUs
- Conventional exactly matching allocation for short-distance ONUs

[Purpose of study]

Reduce latency time of long-distance ONU without affecting short distance ONUs

Low Latency DBA for Long Reach EPON

For short distance ONU, same allocation method and same cycle length

Low Latency DBA for Long Reach EPON

For long distance ONU, allocation with prediction without affecting cycle length

CQR 2012, San Diego, USA

Low Latency DBA for Long Reach EPON

Coexist two types of allocation

- 1. Introduction
- 2. Low Latency DBA for Long Reach EPON
- 3. Performance Assessment of Proposed DBA
- 4. Summary

Experimentation

Transmit 1000 frames and record latency every frame

Results - Long-distance ONU-

Lower latency time with proposed DBA

00

NT'

Results - Short-distance ONU-

No influence on short-distance ONU

- 1. Introduction
- 2. Low Latency DBA for Long Reach EPON
- 3. Performance Assessment of Proposed DBA
- 4. Summary

New low latency DBA algorithm for long-reach EPON

Exactly matching and predicting hybrid allocation

- Keep latency time of 100km long-distance ONUs as long as that of short-reach EPON
- No influence on short-distance ONUs
- Effect of proposed DBA experimentally confirmed

Thank you!

