

2012 IEEE CQR Workshop: Carrier Traffic Analysis and Modeling

Carrier Traffic Analysis and Modeling – Introduction

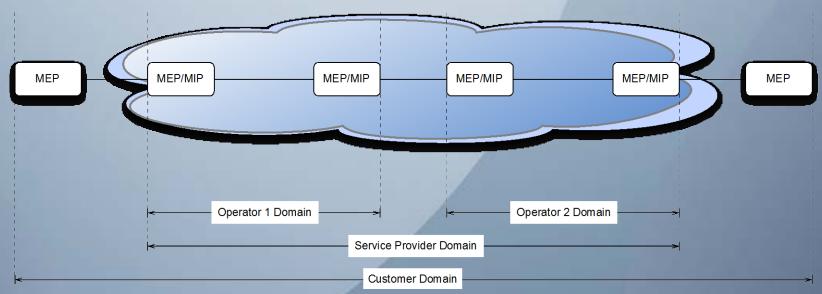
- Outline of Presentation
 - Problem Statement
 - Network Analysis
 - Data availability and acquisition
 - Practical Use of Acquired Data
 - Network Modeling
 - Methodology
 - Available Tools

Carrier Traffic Analysis and Modeling – Introduction (cont.)

- Problem Statement
 - What methods and tools, both in-band and out-of-band, are currently available for accurately and cost effectively capturing, measuring, and modeling the performance of current and future network environments?

- Although not necessarily "new", these technologies and standards have increased relevance given the evolution of modern network "Fabrics", i.e. TRiLL, SPB, etc.
- Data Acquisition and Availability
 - SNMP
 - Both in-band and out-of-band
 - IEEE 802.1ag
 - In-band
 - ITU-T Y.1731
 - In-band
 - OWAMP/TWAMP
 - In-band
 - Vendor Specific/Proprietary solutions
 - Both in-band and out-of-band

SNMP


- Standards based and ubiquitous.
- Very flexible and extremely comprehensive.
- Supports multiple versions, with backwards compatibility.
- May not always be a reliable source of real-time event reporting due to lower processing priority.

- IEEE 802.1ag
 - Also referred to as CFM (Connectivity Fault Management).
 - Limited to Ethernet Network Topologies.
 - Provides a framework for the separation of network components into administrative "fault domains".
 - Defines a set of protocols to be used for purposes of fault detection, location, and reporting.
 - Typically implemented within a given vendor's OAM feature set.
 - Allows for the measurement of traffic between different customer endpoints across a shared backbone or provider network.
 - Defines Maintenance Entity sessions to differentiate traffic groupings.

IEEE 802.1ag Domain and Component Framework

- MEP: Maintenance End Point
- MIP: Maintenance Intermediate Point

- ITU-T Y.1731
 - Defined in conjunction with CFM and intended to be interoperable.
 - Provides for measurement of additional ETH layer OAM functions.
 - Ethernet Frame Delay.
 - Ethernet Frame Throughput.
 - Vendor specific attributes.
 - Support for a separate Maintenance Communication Channel.

TWAMP

- OWAMP One Way Active Measurement Protocol
 - Defined in IETF RFC 4656.
 - Provides for a standards based protocol for measuring unidirectional metrics between two network devices.
- TWAMP
 - Defined in IETF RFC 5357.
 - Provides for a standards based protocol for measuring bi-directional metrics between two network devices.
- Typically implemented within a given vendors' products as a subset of performance monitoring features, i.e. Cisco IP SLA, or Juniper RPM.

- Vendor Specific/Proprietary solutions
 - Proprietary analysis features
 - IP SLA (non-rfc compliant versions).
 - Typically more feature rich, but non-interoperable with other vendors
 - Typically in-band.
 - Netflow
 - L3 + data sampling feature and associated export protocol
 - Multiple versions, with varying capabilities.
 - Very ubiquitous in terms of available commercial and open-source implementations.
 - Multiple vendors have implemented equivalent technologies.
 - Superseded by IPFIX (RFC 5101 & 5102) which is based on v9 but recognized as version 10.
 - Integrated Analysis components
 - Analyzer modules, ASIC's or FPGA's.
 - Hybrid in-band and out-of-band.
 - DPI capabilities vary based on implementation.
 - SPAN/TAP solutions
 - Utilizes external analysis hardware/software.
 - SPAN features ubiquitous and cheap, but problematic and lacking in accuracy.
 - TAP's are safer but more expensive.

- Practical Uses of Acquired Data
 - Modeling and Testing
 - Design and architecture validation
 - Product feature/performance validation
 - Event correlation and notification.
 - SLA compliance and billing/service usage.
 - Trending and future growth planning.
 - Real-time diagnostics and troubleshooting.
 - Forensics or security/risk management and assessment.

Carrier Traffic Analysis and Modeling – Network Modeling

- Methodology
 - Theoretical Modeling
 - Utilizes a simulated environment for network performance and behavioral analysis.
 - Requires significant resources to establish a functional model.
 - Supports overlay of real-world application traffic and network traffic samples.
 - Supports the importing of existing network component configuration and performance data.
 - Supports the import of real-world L2 and L3 topology and routing data.
 - Once built, can be an invaluable tool for Proof of Concept testing and new application deployments.
 - Allows testing of new network designs and changes within a wholly virtualized environment, with no impact to production, and greater chances of successful implementations.

Carrier Traffic Analysis and Modeling – Network Modeling

- Methodology (continued)
 - Practical Modeling
 - Utilizes a hybrid real and synthetic testing model, similar to a traditional lab setup.
 - Typically implemented using specialized testing systems, i.e. traffic generators or network protocol simulators, along with hardware and systems similar to that used in production.
 - Requires less time to establish, however, requires more physical resources, i.e. lab space and appropriate hardware.
 - Provides more accurate performance testing capabilities, and can be used as a training tool in certain circumstances.
 - Similarly, allows testing of new network designs and changes within a wholly virtualized environment, with no impact to production, and greater chances of successful implementations.
 - Also support the ability to import real-world configurations and analytics in order to provide the most accurate test results.

Carrier Traffic Analysis and Modeling – Network Modeling

- Commercial Tools
 - Opnet
 - Spirent
 - IXIA
 - CA Technologies
 - BMC
 - Telchemy
- Open Source Tools
 - OMNet++
 - INET Framework
 - Helios APM
 - NS-1/2

Carrier Traffic Analysis and Modeling

Summary and Wrap-Up....