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ORNL'’s Solution: Hybrid Spread Spectrum
 Novel technique (3 Patents); adaptive, programmable.
« HSS: a synergistic combination of DS, FH, and TH.

 Advantages:

» Adaptive Hybrid Spread-Spectrum (HSS) modulation format
combines DSSS and frequency/time hopping in a multi-
dimensional, orthogonal signaling scheme.

» Capable of excellent LPI, LPD & security properties
(programmable).

» Adaptive, robust protocol for high QoS applications.
» Can be operated in burst mode for very low power drain.

» Superior resistance to multipath and jamming (high process
gain).

» Easily deployed with modern chip technology.
» Compliant with existing FCC/NTIA/ETSI rules for ISM bands.

» ldeally implemented via modern FPGA-based electronics, ASICs,
and SDR techniques. ¢ OAK
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Typical HSS Applications
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DIRECT-SEQUENCE SPREAD-SPECTRUM
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FREQUENCY-HOPPING SPREAD-SPECTRUM
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Spectrum has same bandwidth
and power density after hopping
with PN sequence (PN Rate <<
Data Rate for standard FHSS)

Original narrowband, high
power data stream is restored if
local PN sequence is same as
and lined up with received PN
sequence




SLOW HYBRID SPREAD-SPECTRUM (DS/SFH
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FAST HYBRID SPREAD-SPECTRUM (DS/FFH)
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Spectrum has same bandwidth
and power density after hopping
with PN sequence (PN Rate >>
Data Rate for FastHSS™; e.qg., as
above, 2 hops per bit).

10 log (no. of hopping channels) + 10 log (BWps/Rint0)

Original narrowband, high
power data stream is restored if
local PN sequence is same as
and lined up with received PN
sequence




HSS i1s a Multidimensional Signal

e HSS can be defined in 3 axes (code, frequency,
and time).

— Each dimension is orthogonal with the others.

— Permissible signal spaces along an axis may also be ~
orthogonal. Frequency
e Codes @D (C.Falo)
e Frequencies
e Time slots

Code

e Easily adaptable to exploit

(Co.Forto)

many degrees of freedom to

meet system requirements.

Time

e Some signal overlaps may be orthogonal.
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MULTIPATH PROPAGATION

el “>._ LONG-PATH REFLECTION
TRANS. p g RCVR

_ _ @ SHORT-PATHREFL.
mDifferential delays are approx. 1 ns per foot
mShort-path delays (indoors) are typically < 0.1us
B Spread-spectrum modulation can largely cancel long-path effects

ORNL is developing new techniques to mitigate short-path degradatiogns!
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Direct Digital Synthesizers (DDS)

Stored Phase

Phase L Phase Lookup
| Adder | Delay | Adder — Adder [ o > —» NCO
Increment Quantization Table
Phase Phase
Offset » Quantization
Error
Dither

e The implementation of a DDS has two distinct parts:

— A phase accumulator accumulates the phase
Increment and adds in the phase offset.

— The DDS output is then calculated by quantizing the
results of the phase accumulator section and using
them to select values from a lookup table.
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RF Coexistence — Multi-User, Jamming,
and Multipath Fading Performance

The error probability of one hop is:

K Number of users

~

M Number of FH channels -1

_ k(s
L Number of hops per bit R = = P, (J users)
T =-2 Duration of each ho R . . . . . N
L P = {P*(j users, no jam)+PX(j users, ful jam)+P!(j users, partial jam)}
T, :N_k;_ Chip duration for PN sequence |j<=—01 k
= P(j rs, no jam)P ' rs, no jam
N Period of the PN sequence j:o{ (J users, no jam)P"(z] J users, no jam)
Wos  Banduwidth of DS waveform +P(j users, ful jam)P*(e| j users, ful jam)
W, Bandwidth of the wideband jamming +P(j users, partial jam)P* (| j users, partial jam)}
W Number of hopping channels corrupted by jamming
WJp Part of the bandwidth of the channel partially corrupted by jamming

The error probability of one bit is:

L

L
R, = Z (d](Ph)d (1- Ph)L_d

gttt
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RF Coexistence — Multi-User, Jamming,
and Multipath Fading Performance

T itted signal :
P Transmitted signal power From the problem formulation, we have
M Number of FH channels K1 j K|
. . - 1 1 M-W -1
L Number of hops per bit P(j users, no jam) = . — | |1-— _
T ] M M M
T =-2 puration of each hop j K-1-j
L 1 1 w
P(j users, full jam) = — | |1-— —
T . i )M M M
T, =—> Chip duration for PN sequence
NL K-1-j
P(j users, partial jam) = K- 1 1 L L
N Period of the PN sequence J P J M M M
WDS Bandwidth of DS waveform
W,  Bandwidth of the wideband jamming .
_ o No Jamming
W Number of hopping channels corrupted by jamming
. . 1
W,”  Part of the bandwidth of the channel partially corrupted by jamming P*(¢] j users, no jam)=Q
_ _ _ JNSR/2+1¥
NSR =N, /2PT  Noise-to-signal ratio
JSR=N,/2PT  Jamming-to-signal ratio .
I]k Interference to signal ratio introduced by the other users hopping in user k's channel FU” Jammlng
q=W}/ /W, Fraction of the channel jammed
1

P*(¢| j users, full jam)=Q

_ _ JNSR/2+JSR/2+1}
Partial Jamming

P“(e| j users, partial jam)=qP*(g| j users, partial jam, corrupted portion)+(1—q)P*(e| j users, partial jam, uncorrupé
¢ OAK
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Hybrid DS/FFH Multi-user Simulation
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+ JNR=13dB T N
= Rician coeff.y=0.1 107 el 2 120 users
= Chan. covariance A = 1 .
10
= Jammed chan. =5 5 10 15 20
_ SNR(dB)
= Channel portion Performance of a hybrid DS/FFH
partially corrupted = 0.4 system: Effect of different number of

« Represents user users (multi-user interference).
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Hybrid DS/FFH Multi-user Simulation

e Severe (~worst-case) 10"

channel conditions: e S

= K=100users, 100% K7y e, INR=13 dB
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= L =5 hops/bit 2"
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= N =127 PN code length % 3 \\
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= JNR=10-16 dB
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= Chan. covariance A=10 107 m - o
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= Channel portion Performance of a hybrid DS/FFH
partially corrupted = 0.4 system: Effect of different jamming-to-

ise ratios (JNRS).
. Represents user noise ratios (JNRs)
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Hybrid DS/FFH Multi-user Simulation

e« Severe (~worst-case) 1o .
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Hybrid DS/FFH Multi-user Simulation

« Severe (~worst-case)
channel conditions:

= K =100 users, 100%
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Hybrid DS/FFH Multi-user Simulation

« Severe (~worst-case)
channel conditions:

= K =100 users, 100%
duty cycle

= L =5hops/bit
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« Represents user
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Hybrid DS/FFH Multi-user Simulation

e Severe (~worst-case) e
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Hybrid DS/FFH Multi-user Simulation

e Severe (~worst-case) 1w’
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= Channel portion Performance of a hybrid DS/FFH
partially corrupted = 0.4 system: Effect of different Rician fading

« Represents user channel parameters.
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Hybrid DS/FFH Multi-user Simulation

 Severe (~worst-case)
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Hybrid DS/FFH Comparative Simulation

« Severe (~worst-case)
channel conditions:

= Two-path Rayleigh
chan.

= P1: A=0,gain =0.7
= P2: A=0.3 us, gain =

0.4
= Equal-bandwidth cases
= DSSF=16

= FH: 16 ch., 4 b/hop

= DS/FH: SF =16, 4
hopping fregs.

 Represents the fixed-
bandwidth advantage
of DS/FFH format over
other modulations.
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Conclusions

e The performance of a hybrid DS/FFH system was
analytically evaluated in a worst-case use scenario.

« We derived the average BER for a hybrid DS/FFH
system that includes the effects from wide-band and
partial-band jamming, multi-user interference and/or
varying degrees of Rician/Rayleigh fading.

* Numerical results exploring the parameter space of the
HSS system have been presented to demonstrate its
effectiveness under different conditions and scenarios.

« The detailed performance and security aspects of HSS
signals will be further analyzed in a future paper.
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