
Performance Study of Hybrid 
DS/FFH Spread-Spectrum 
Systems in the Presence of 
Multipath Fading and Multiple-
Access Interference 

Mohammed M. Olama 

Teja P. Kuruganti 

Steven F. Smith 

Computational Sciences & Engineering  Division  
Oak Ridge National Laboratory 

 

Xiao Ma 

Electrical Engineering and Computer Science Dept. 
University of Tennessee 

 
 

IEEE CQR 2012 



2 Managed by UT-Battelle 
for the Department of Energy 

Outline 

• Introduction 

• Types of SS Systems 

• Multipath Fading Channel 

• Direct Digital Synthesizers (DDS) 

• Performance Evaluation of DS/FFH 

• Numerical Results 

• Conclusion 



3 Managed by UT-Battelle 
for the Department of Energy 

ORNL’s Solution: Hybrid Spread Spectrum 
• Novel technique (3 Patents); adaptive, programmable. 

• HSS: a synergistic combination of DS, FH, and TH. 

• Advantages: 
 Adaptive Hybrid Spread-Spectrum (HSS) modulation format 

combines DSSS and frequency/time hopping in a multi-
dimensional, orthogonal signaling scheme. 

 Capable of excellent LPI, LPD & security properties 
(programmable). 

 Adaptive, robust protocol for high QoS applications. 
 Can be operated in burst mode for very low power drain. 
 Superior resistance to multipath and jamming (high process 

gain). 
 Easily deployed with modern chip technology. 
 Compliant with existing FCC/NTIA/ETSI rules for ISM bands. 
 Ideally implemented via modern FPGA-based electronics, ASICs, 

and SDR techniques. 
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Typical HSS Applications 
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HSS is a Multidimensional Signal 
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MULTIPATH PROPAGATION 

TRANS. RCVR. 

LONG-PATH REFLECTION 

SHORT-PATH REFL. 
Differential delays are approx. 1 ns per foot 
Short-path delays (indoors) are typically < 0.1µs 
Spread-spectrum modulation can largely cancel long-path effects 

ORNL is developing new techniques to mitigate short-path degradations! 
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Direct Digital Synthesizers (DDS)  

• The implementation of a DDS has two distinct parts: 
– A phase accumulator accumulates the phase 

increment and adds in the phase offset.  
– The DDS output is then calculated by quantizing the 

results of the phase accumulator section and using 
them to select values from a lookup table.  
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RF Coexistence – Multi-User, Jamming, 
and Multipath Fading Performance 
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RF Coexistence – Multi-User, Jamming, 
and Multipath Fading Performance 

M
L

bTT
L

=

b
c

TT
NL

= PN

N PN

DSW

JW

W
p

JW

Number of FH channels 

Number of hops per bit 

Duration of each hop 

Chip duration for sequence 

Period of the 

Bandwidth of DS waveform 

Bandwidth of  the wideband jamming 

Number of hopping channels corrupted by jamming 

Part of the bandwidth of the channel partially corrupted by jamming 

sequence 

From the problem formulation, we have 
1

1

1

1 1 1 1(  ,   ) 1
    

1 1 1(  ,  ) 1
    

1 1 1 1(  ,  ) 1
    

j K j

j K j

j K j

K M WP j users no jam
j M M M

K WP j users full jam
j M M M

K
P j users partial jam

j M M M

− −

− −

− −

−  − −     = −      
      

−      = −      
      
−     = −    

     


 



1( |  ,   )
/ 2

k

k
j

P j users no jam Q
NSR I

ε
 
 =
 + Noise-to-signal ratio 

Interference to signal ratio introduced by the other users hopping in user k’s channel  

No Jamming 

Full Jamming 

1( |  ,  )
/ 2 / 2

k

k
j

P j users full jam Q
NSR JSR I

ε
 
 =
 + + 

Jamming-to-signal ratio 

Partial Jamming 
( |  ,  ) ( |  ,  ,  ) (1 ) ( |  ,  ,  )k k kP j users partial jam q P j users partial jam corrupted portion q P j users partial jam uncorrupted portionε ε ε= + −

/p
J DSq W W= Fraction of the channel jammed 

0 / 2NSR N PT=

/ 2JJSR N PT=

P Transmitted signal power 



14 Managed by UT-Battelle 
for the Department of Energy 

Hybrid DS/FFH Multi-user Simulation 
• Severe (~worst-case) 

channel conditions: 
 K = 20-120 users, 100% 

duty cycle 
 L = 5 hops/bit 
 M = 20 channels 
 N = 127 PN code length 
 DS PG = 21 dB 
 JNR = 13 dB 
 Rician coeff. γ = 0.1 
 Chan. covariance λ = 10 
 Jammed chan. = 5 
 Channel portion 

partially corrupted = 0.4 

• Represents user 
flooding in rough 
terrain. 

 

Performance of a hybrid DS/FFH 
system: Effect of different number of 

users (multi-user interference). 

5 10 15 20
10-8

10-7

10-6

10-5

10-4

10-3

10-2

SNR(dB)

E
rro

r P
ro

ba
bi

lit
y

 

 

20 users
40 users
60 users
80 users
100 users
120 users



15 Managed by UT-Battelle 
for the Department of Energy 

Hybrid DS/FFH Multi-user Simulation 
• Severe (~worst-case) 

channel conditions: 
 K = 100 users, 100% 

duty cycle 
 L = 5 hops/bit 
 M = 20 channels 
 N = 127 PN code length 
 DS PG = 21 dB 
 JNR = 10-16 dB 
 Rician coeff. γ = 0.1 
 Chan. covariance λ = 10 
 Jammed chan. = 5 
 Channel portion 

partially corrupted = 0.4 

• Represents user 
flooding in rough 
terrain. 

 

Performance of a hybrid DS/FFH 
system: Effect of different jamming-to-

noise ratios (JNRs). 
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Hybrid DS/FFH Multi-user Simulation 
• Severe (~worst-case) 

channel conditions: 
 K = 100 users, 100% 

duty cycle 
 L = 5 hops/bit 
 M = 20 channels 
 N = 127 PN code length 
 DS PG = 21 dB 
 JNR = 13 dB 
 Rician coeff. γ = 0.1 
 Chan. covariance λ = 10 
 Jammed chan. = 2-8 
 Channel portion 

partially corrupted = 0.4 

• Represents user 
flooding in rough 
terrain. 

 

Performance of a hybrid DS/FFH 
system: Effect of different number of 

fully-jammed channels. 
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Hybrid DS/FFH Multi-user Simulation 
• Severe (~worst-case) 

channel conditions: 
 K = 100 users, 100% 

duty cycle 
 L = 1-7 hops/bit 
 M = 20 channels 
 N = 127 PN code length 
 DS PG = 21 dB 
 JNR = 13 dB 
 Rician coeff. γ = 0.1 
 Chan. covariance λ = 10 
 Jammed chan. = 5 
 Channel portion 

partially corrupted = 0.4 

• Represents user 
flooding in rough 
terrain. 

 

Performance of a hybrid DS/FFH 
system: Effect of different numbers of 

frequency hops per bit. 
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Hybrid DS/FFH Multi-user Simulation 
• Severe (~worst-case) 

channel conditions: 
 K = 100 users, 100% 

duty cycle 
 L = 5 hops/bit 
 M = 10-40 channels 
 N = 127 PN code length 
 DS PG = 21 dB 
 JNR = 13 dB 
 Rician coeff. γ = 0.1 
 Chan. covariance λ = 10 
 Jammed chan. = 5 
 Channel portion 

partially corrupted = 0.4 

• Represents user 
flooding in rough 
terrain. 

 

Performance of a hybrid DS/FFH 
system: Effect of different numbers of 

available hopping channels. 
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Hybrid DS/FFH Multi-user Simulation 
• Severe (~worst-case) 

channel conditions: 
 K = 100 users, 100% 

duty cycle 
 L = 5 hops/bit 
 M = 20 channels 
 N = 4-64 PN code length 
 DS PG = 21 dB 
 JNR = 13 dB 
 Rician coeff. γ = 0.1 
 Chan. covariance λ = 10 
 Jammed chan. = 5 
 Channel portion 

partially corrupted = 0.4 

• Represents user 
flooding in rough 
terrain. 

 

Performance of a hybrid DS/FFH 
system: Effect of different DS PN code 

lengths. 
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Hybrid DS/FFH Multi-user Simulation 
• Severe (~worst-case) 

channel conditions: 
 K = 100 users, 100% 

duty cycle 
 L = 5 hops/bit 
 M = 20 channels 
 N = 127 PN code length 
 DS PG = 21 dB 
 JNR = 13 dB 
 Rician coeff. γ = 0.1-0.7 
 Chan. covariance λ = 10 
 Jammed chan. = 5 
 Channel portion 

partially corrupted = 0.4 

• Represents user 
flooding in rough 
terrain 

 

Performance of a hybrid DS/FFH 
system: Effect of different Rician fading 

channel parameters. 
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Hybrid DS/FFH Multi-user Simulation 
• Severe (~worst-case) 

channel conditions: 
 K = 100 users, 100% 

duty cycle 
 L = 5 hops/bit 
 M = 20 channels 
 N = 127 PN code length 
 DS PG = 21 dB 
 JNR = 13 dB 
 Rician coeff. γ = 0.1 
 Chan. covariance λ = 10 
 Jammed chan. = 5 
 Channel portion 

partially corrupted = 0.4 

• Represents user 
flooding in rough 
terrain. 

 

Performance of a hybrid DS/FFH 
system: Effect of different hitting rates. 
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Hybrid DS/FFH Comparative Simulation 
• Severe (~worst-case) 

channel conditions: 
 Two-path Rayleigh 

chan. 
 P1: ∆ = 0, gain = 0.7 
 P2: ∆ = 0.3 µs, gain = 

0.4  
 Equal-bandwidth cases 
 DS SF = 16 
 FH: 16 ch., 4 b/hop 
 DS/FH: SF = 16, 4 

hopping freqs. 

• Represents the fixed-
bandwidth advantage 
of DS/FFH format over 
other modulations. 

Comparative performance of a hybrid 
DS/FFH versus other forms in Rayleigh 

fading. 
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• The performance of a hybrid DS/FFH system was 
analytically evaluated in a worst-case use scenario. 

• We derived the average BER for a hybrid DS/FFH 
system that includes the effects from wide-band and 
partial-band jamming, multi-user interference and/or 
varying degrees of Rician/Rayleigh fading. 

• Numerical results exploring the parameter space of the 
HSS system have been presented to demonstrate its 
effectiveness under different conditions and scenarios. 

• The detailed performance and security aspects of HSS 
signals will be further analyzed in a future paper. 

Conclusions 
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