Block-based Fair Queuing: An Efficient Network QoS Provisioning Algorithm for High-speed Data Transmission

Shu-Hsin Chang, Wei-Chih Ting, Chun-Yu Chuang and Shih-Yu Wang

Speaker: Shu-Hsin Chang

Date: 2012/05/15

Outline

- Background
- Motivation
- Proposed method
- Simulation
- Summary

Background

Traffic scheduling algorithm

To allocate the limited bandwidth to all of the sessions sharing an

outgoing link.

Traffic characteristics

- Maximum burst size
- Average arriving rate

Performance requirements

- Maximum delay
- Maximum latency

Traffic model (Token bucket)

- New tokens are continuously filling the bucket at a constant rate
- The bucket has a maximum volume of token number
- An arriving packet is released only when it can remove a number of tokens equal to its packet length

Motivation

Premise

- There exists tradeoff between packet latency and computational complexity
 - packet latency \(\psi, \) computational complexity \(\psi \)

Characteristic Service Discipline	Complexity	Start-up Latency
WFQ	O(N)	$p_{i,\text{max}}/r_i + p_{\text{max}}/C$
SCFQ	O(logN)	$p_{i,\text{max}}/r_i + \sum_{j=1}^{N} p_{j,\text{max}}/C$
DRR	O(1)	$(3F-2u_i)/C$

Observation

All sessions suffer the same performance degradation in a simplified algorithm

Question

– How to reduce the computation time under the existing tradeoff?

Solution

- To increase the data length in each scheduling computation in WFQ algorithm
- To save computation time through parameter setting, instead of applying simplified algorithm

Previous Work

- WFQ (Weighted Fair Queuing)
 - Concept
 - Each session is reserved a positive real number as its service weight
 - Sessions are served at rates proportional to their service weights
 - Mechanism
 - Each arriving packet is stamped with a service tag
 - Packets are picked up for transmission in increasing order of their tag values.
 - Service Tag
 - The service tag for the k^{th} packet on session i is defined as

$$F_{i,0} = 0$$

 $F_{i,k} = \max\{V(a_{i,k}), F_{i,k-1}\} + p_{i,k} / w_i$

System virtual time

$$\frac{dV(t)}{dt} = \frac{1}{\sum_{j \in B(t)} w_j}$$

 $V(t_0)=0$

Proposed Method

Block-based Weighted Fair Queuing (BWFQ)

- An extension of WFQ algorithm
- Two parameters
 - weight (w_i): determine the ratio of service rate
 - granule (g_i) : determine the data length for scheduling

Concept

- Packets from each session are aggregated to blocks in advance
- The order of data transmission is arranged in unit of block

Performance

- By assigning great granules to delay-insensitive sessions
 - → computation time is saved
- By assigning small granules to delay-sensitive sessions
 - → QoS is guaranteed

Proposed Method

Components

- Traffic Regulator :
 - To regulate traffic from each session to conform to a token bucket model
- Block Accumulator :
 - To combine packets from each session to form data blocks
- WFQ Scheduler :
 - To sort the blocks from all sessions for transmission according to WFQ algorithm

Comparison of complexity

BWFQ has the same complexity of WFQ algorithm

Characteristic Algorithm	Complexity	Start-up Latency
WFQ	O(N)	$p_{i,\text{max}}/r_i + p_{max}/C$
BWFQ	O(N)	$(g_i + p_{i,\text{max}}) / r_i + p_{max} / C$

Comparison of computation time

BWFQ saves computation time by scheduling the data in unit of block

Component Traff	Traffic Regulator	Block Accumulator	WFQ Scheduler		
	Trailic Regulator		Service tag	Virtual time	Sorting
Formula	$\max\{0,(p_{i,k}-\sigma_i(t))\} / \rho_i$	$\max\{0,(g_{i}-q_{i}(t))\}/r_{i}$	$\max \{V(a_{i,k}), F_{i,k-1}\}$		
			$+ p_{i,k} / C \cdot w_i$	$t/(\Sigma_{j\in B(t)} w_j)$	
Complexity	O(1)	O(1)	O(1)	O(N)	O(logN)
WFQ	1/packet	0	1/packet	1/packet	1/packet
BWFQ	1/packet	(1/packet)	1/block	1/block	1/block

Expectation of maximum delay

Mechanism of block aggregation introduces an extra delay no more than g_i/r_i

$$D_i^{*,BWFQ} \leq D_i^{*,WFQ} + g_i/r_i$$

 $D_i^{*,X}$: max delay of X algorithm for session i

 g_i : granule of session i

 r_i : min service rate for session i

 $b_{i,k}:$ the k^{th} block size on session i

- Maximum accumulating time
 - The max service delay in the Scheduler is $b_{i,k}/r_i$
 - \rightarrow The max waiting time in the Accumulator is limited by $(g_i b_{i,k}) / r_k$

Potential burst size

- For each session i, the data released to Scheduler has a potential burst size of $\sigma_i(t)+q_i(t)$

• $\sigma_i(t)$: The token number in the Bucket at time t

• $q_i(t)$: The length of all packets waiting in the Accumulator at time t

Influence

The delay upper bound guaranteed by the Scheduler may be broken.

Additional constraint

- the maximum block size B_i should compensate for the potential increment in burst size.

 $B_i = g_i - \max\{0, \sigma_i(t_{i,1}) + b_{i,1} - \sigma_i\}$

 B_i : max block size of session i

 g_i : granule of session i

 $oldsymbol{b_{i,1}}$: the size of the first block in a busy period

 $t_{i,1}$: release time of the first block from Accumulator

 σ_i : max token number

The lower bound of maximum block size

- **Theorem:** For a session i that conforms to a token bucket (σ_i, ρ_i) , where $\rho_i < r_i$

$$B_{i} = g_{i} - \max\{0, \sigma_{i}(t_{i,1}) + b_{i,1} - \sigma_{i}\}$$

$$> \max\{q_{i}(t_{i,1}), g_{i} - q_{i}(t_{i,1})\} > g_{i}/2$$

 B_i : max block size of session i in a busy period

 g_i : granule of session i

 $t_{i,1}$: release time of the first block from Accumulator $q_i(t)$: the length of all packets of session i waiting in

the Accumulator at time t

– Proof:

• Case1) $q_i(t_{i,1}) < g_i/2$ We can prove that $B_i = g_i - \max\{0, \sigma_i(t_{i,1}) + b_{i,1} - \sigma_i\} > q_i(t_{i,1})$

• Case2) $q_i(t_{i,1}^-) \ge g_i/2$ We can prove that $B_i = g_i - \max\{0, \sigma_i(t_{i,1}) + b_{i,1} - \sigma_i\} > g_i - q_i(t_{i,1})$

Flow chart

The upper bound of packet delay

- **Theorem:** Given a session i that conforms to a token bucket (σ_i, ρ_i) , and $\rho_i < r_i$, the BWFQ server guarantees a delay bounds as

$$D_i^{*,BWFQ} \leq D_i^{*,WFQ} + g_i/r_i$$

 $D_i^{*,X}$: max delay of X algorithm for session i

 g_i : granule of session i

 r_i : min service rate for session i

- Proof:
 - Packet departure time

$$d_{i,k} \le \min \left\{ t : S_i(t_{i,1}, t) = \sum_{u=1}^k b_{i,u} \right\} + \frac{p_{\text{max}}}{C}$$

Packet arrival time

$$a_{i,k} \ge \max \left\{ \tau : A_i \left(a_{i,1}, \tau \right) = \sum_{u=1}^{k-1} b_{i,u} \right\} \ge$$

• Maximum delay time

$$\begin{split} D_{i}^{*,BWFQ} &= \max_{k \geq 1} \left\{ d_{i,k} - a_{i,k} \right\} \\ &= \max_{\tau > 0} \left\{ t - \tau : S_{i}^{*}(t) = A_{i}^{*}(\tau) + g_{i} + p_{i,\max} \right\} + \underbrace{p_{\max}}_{C} \\ &\leq \dots = D_{i}^{*,WFQ} + \underbrace{g_{i}}_{r_{i}} \end{split}$$

Simulation

Simulation Model

Parameter	Value
Total bandwidth (C)	100 Mbps
Number of sessions (n)	10, 20, 30, and 40
Granule (g)	0, 1000, 2000, 3000, 4000 bytes
Source	ON-OFF traffic model
Packet size (l)	Uniformly distributed between (100,1500) bytes
Max burst size (σ)	5000 bytes
Average rate (ρ)	99 / n Mbps
Service weight (w)	1/n
Simulation length	600 sec

Algorithm

- WFQ, SCFQ, BWFQ

Metrics

- Maximum delay: The max packet delay time in the BWFQ server.
- Average block size: The average size of transmission data in each scheduling computation.

Simulation Result

Maximum delay

Comparison

- Compared to SCFQ, BWFQ provides lower delay for sessions with granule = 0
- Compare to WFQ, the extra delay in BWFQ is bounded by g_i/r_i

Simulation Result

Average block size

Comparison

- Compared to WFQ, BWFQ reduces the computation time by increasing the data length in each scheduling computation
- The average block size increases with granule, and is independent of the session number

16

Industrial Technology Research Institute

Summary

We proposed the Block-based WFQ algorithm

- Concept
 - To allocate a suitable amount of computation resource to each session through parameter setting
- Method
 - Use two parameters to control the minimum bandwidth and delay upper bound
 - Dynamically aggregate packet in advance
 - Arrange the data transmission order in unit of block
- Performance
 - Save the computation time by setting great granules for delay-insensitive sessions
 - Guarantee the delay upper bound by setting small granules for delay-sensitive sessions
- Limitation
 - BWFQ has the same complexity as WFQ

THANK YOU

Shu-Hsin Chang

sh_chang@itri.org.tw