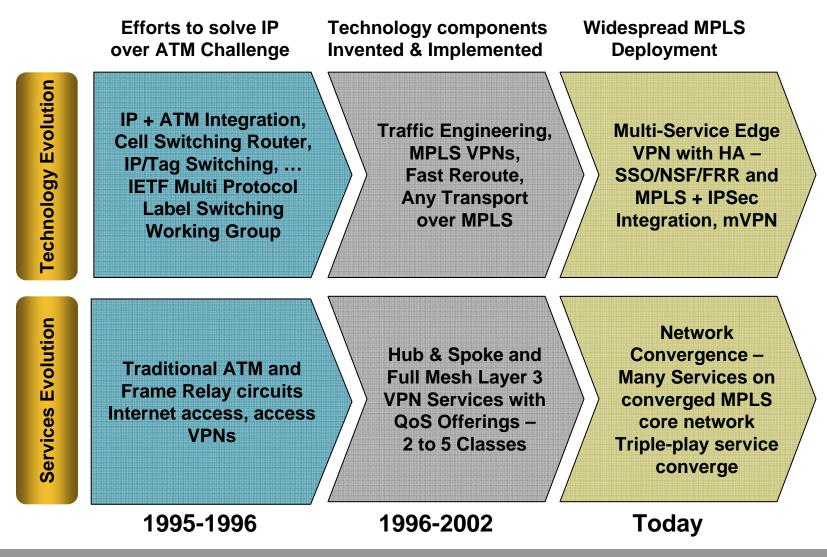
CISCO SYSTEMS


MPLS High Availability IEEE CQR Workshop – London, June 7-9, 2006

Harmen van der Linde Product Manager – MPLS Cisco Systems, Inc. Internet Technologies Division havander@cisco.com

Topics

- MPLS overview
- High Availability (HA)
- HA mechanisms
- MPLS HA mechanisms
- Conclusions

MPLS Network Evolution

© 2005 Cisco Systems, Inc. All rights reserved.

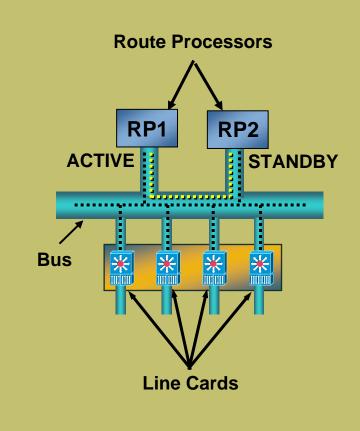
Multi-Protocol Label Switching (MPLS)

- MPLS has become key infrastructure technology for Service Provider networks and new emerging broadband networks
- MPLS architecture can be decomposed into two functional planes
 - Control plane
 - Forwarding plane
- MPLS control plane
 - Distributes labels and establishes label switched paths
 - Multiple control protocols; LDP, BGP, and RSVP-TE
- MPLS forwarding plane
 - Used for MPLS labeled data packet forwarding
- MPLS Applications
 - Layer-3 VPNs, Layer-2 VPNs, Traffic Engineering (TE)

Forwarding Plane v.s. Control Plane

- Traditional routing/switching platforms
 - Software-based control and forwarding plane
- Next-generation routing/switching platforms
 - Separate control and forwarding plane
 - Control plane resides on Route Processors (RPs)
 - Forwarding plane resides on Line Cards (LCs)
- Certain failures confined to control plane
 - Hardware failure on active RP
 - Software failure on active RP

High Availability (HA)


- End-to-end protection against network failures
- High Availability focused on maximizing network uptime and minimize effects of planned and unplanned network outages
 - Preserve end-to-end network service connectivity
- For network high availability, disruption in forwarding plane must be kept to an absolute minimum
 - Isolate control plane failures from forwarding plane
- Separation of control and forwarding plane should allow forwarding to continue while control plane recovers (NSF)

HA Mechanisms

- Component and Device Level Resiliency
 - Hardware and software component resiliency
 - Distributed line cards, route processors, Modular operating software
 - Stateful Switch-Over between RPs (SSO)
 - Control/forwarding plane decoupling; Non-Stop Forwarding (NSF)
- Network Level Resiliency
 - Optimized convergence algorithms, speeding up network recovery
 - Intelligent protocol fabric with network-wide forwarding awareness
- Operations and management
 - Embedded event management for proactive maintenance
 - Embedded, lightweight measurements of availability metrics
 - In-service software upgrades (ISSU)

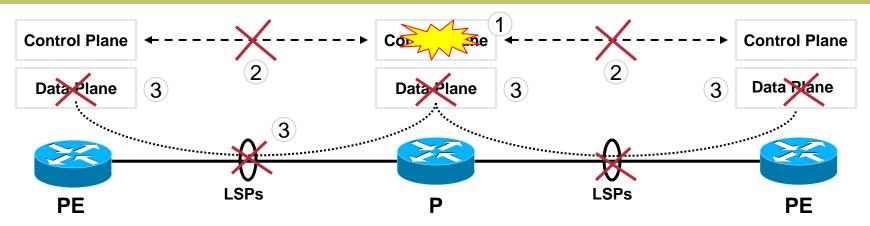
NSF With SSO

- Non-Stop Forwarding (NSF): minimal or no packet loss
 - Packet forwarding continues during reestablishment of peering relationships
 - No route flaps between participating neighbor routers
- Stateful Switch-Over (SSO): zero interruption to protocol sessions
 - Active RP synchronizes information with standby RP
 - Session state maintained for high availability-aware protocols on standby RP
 - Standby RP takes control when active RP is compromised

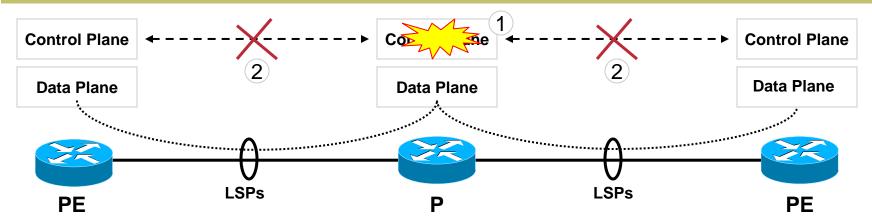
MPLS HA – Component Resiliency

- MPLS High Availability features extend NSF with SSO capabilities for:
 - MPLS Forwarding
 - Label distribution protocol (LDP)
 - Layer-3 Virtual Private Networks (MP-iBGP)
 - Traffic Engineering (TE)
 - AToM and L2VPNs
- Minimal disruption to MPLS forwarding plane due to route processor control plane failures
 - Includes MPLS control plane failures (LDP, BGP, RSVP)

MPLS HA – Network Resiliency


- MPLS control plane protocol enhancements to improve failure detection time and network convergence
- Graceful Restart (GR)
 - LDP, MP-BGP
- Fast Convergence
 - LDP (IGP sync), MP-BGP
- TE FRR
 - Link protection
 - Node protection

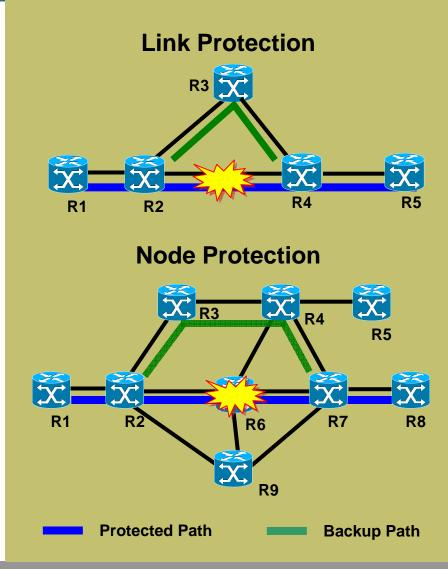
MPLS Graceful Restart (GR)


- LDP and BGP use TCP as a reliable transport mechanism for exchange of protocol messages
- TCP session between LDP/BGP peers may go down due to a RP switchover or HW/SW failures
- On detection of TCP session failure (if HW/SW failure), existing LDP and BGP control plane components would remove their forwarding state
- Graceful Restart mechanism enables continuous MPLS traffic forwarding during MPLS Control Plane failure and recovery
 - Temporary use of old MPLS forwarding information until refresh of forwarding entries

MPLS Graceful Restart + NSF/SSO

No MPLS HA support

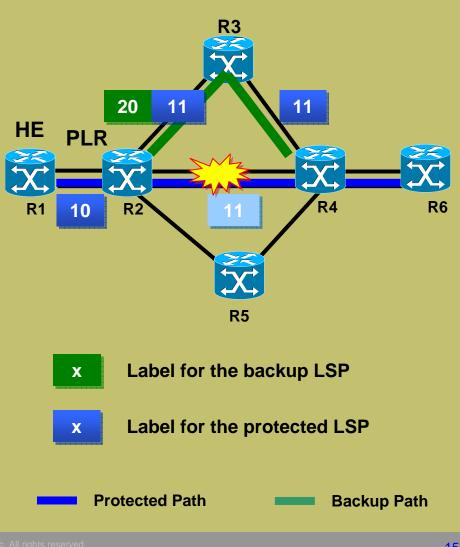
MPLS HA Support: NSF/SSO + Graceful Restart



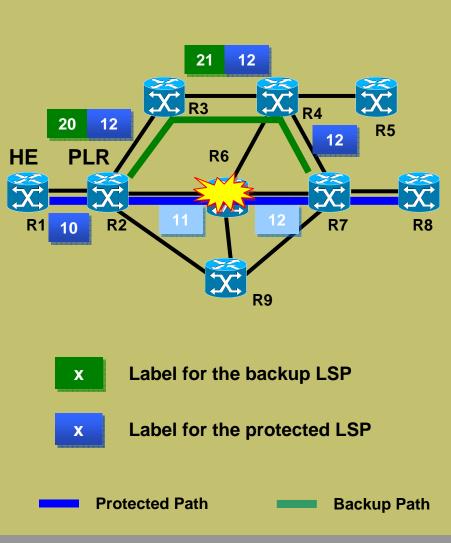
Fast Convergence: LDP-IGP Sync

- LDP maintains MPLS label database (LIB), which is linked to the routing database maintained by IGP (e.g., OSPF)
 - LIB content used by LDP to write MPLS forwarding (LFIB)
- LDP and IGP operation loosely coupled
 - Separate independent synchronization mechanisms for exchange of IGP routes and LDP label information (between IGP and LDP peers, resp.)
- Mismatch between IGP routing database and LDP label/forwarding database can potentially lead to MPLS packet loss
 - E.g.; IGP on link re-converges before LDP completes label exchange and LFIB updates, resulting into missing label forwarding (LFIB) entries
- LDP-IGP synchronization aimed to minimize potential MPLS packet loss as a result of mismatch between IGP and LDP
 - IGP instructed to delay (via hold timer) bringing up IGP adjacency on primary link
 - IGP instructed to advertise max-metric for link (resulting in possible upstream re-routing)

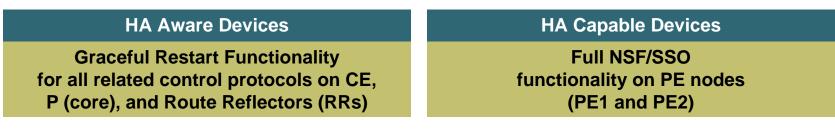
MPLS TE Fast Re-Route (FRR)

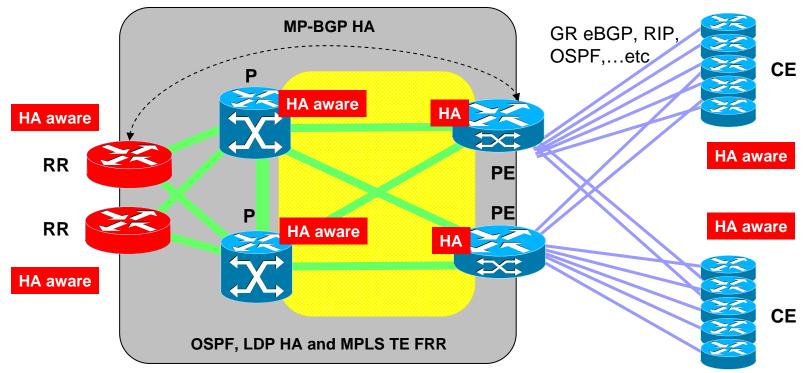

- IP routing protocols (e.g., OSPF, BGP) may be tuned to convergence within a few seconds
- Some traffic (e.g. voice) will require more aggressive convergence time
 - Typically 50 ms or less
- MPLS TE FRR offers protection against network failures
 - Link protection
 - Node protection

© 2005 Cisco Systems, Inc. All rights reserved.


FRR Link Protection

- Creation of Next-hop Backup Tunnel
 - Parallel path around protected link to next hop
- On link failure detection Point of Local Repair (PLR) swaps label and pushes backup label
 - Traffic sent over backup path
- PLR notifies TE Head End (HE), which triggers global TE path re-optimization




FRR Node Protection

- Creation of Next-next-hop Backup Tunnel
 - Parallel path around protected node to nextnext-hop
- Node failure triggers Point of Local Repair (PLR) to swap label and push backup label
 - Traffic sent over backup path around failed node
- PLR notifies TE Head End (HE), which triggers global TE path re-optimization

HA in MPLS Network Infrastructure

© 2005 Cisco Systems, Inc. All rights reserved.

Conclusions

- High Availability focused on maximizing network uptime and minimize effects of planned and unplanned network outages
- MPLS HA functional areas include Component and Device Level Resiliency, Network Level Resiliency, and Operations and management
- MPLS HA focused on separation of control and forwarding plane to allow forwarding to continue during control plane failures and recovery
- Network and layer-2/3 service convergence are driving need for High Availability in Service Provider MPLS networks

Acronyms

ATM	Asynchronous Transfer Mode	
АТоМ	Any Transport over MPLS	
BGP	Border Gateway Protocol	
FRR	Fast Re-Route	
GR	Graceful Restart	
HA	High Availability	
HE	Head End (for TE path)	
HW	Hardware	
IGP	Interior Gateway Protocol	
IP	Internet Protocol	
ISSU	In-Service Software Upgrade	
LC	Line Card	
LDP	Label Distribution Protocol	
LSP	Label Switched Path	

LIB	Label Information Base
LFIB	Label Forwarding Information Base
MPLS	Multi-Protocol Label Switching
MP-iBGP	Multi-Protocol Interior BGP
NSF	Non-Stop Forwarding
PLR	Point of Local Repair
RP	Route Processor
RSVP	Resource Reservation Protocol
SW	Software
SSO	Stateful Switch-Over
ТСР	Transmission Control Protocol
TE	Traffic Engineering
VPN	Virtual Private Network